In this contribution, we present the first numerical simulations of a relativistic outflow propagating through the inner hundreds of parsecs of its host galaxy, including atomic and ionized hydrogen, and the cooling effects of ionization.Our results are preliminary, but we observe efficient shock ionization of atomic hydrogen in interstellar clouds. The mean density of the interstellar medium in these initial simulations is lower than that expected in typical galaxies, which makes cooling times longer and thus no recombination is observed inside the shocked region. The velocities achieved by the shocked gas in the simulations are in agreement with observational results, although with a wide spectrum of values.
Context. Relativistic jets are ubiquitous in the Universe. In microquasars, especially in high-mass X-ray binaries, the interaction of jets with the strong winds driven by the massive and hot companion star in the vicinity of the compact object is fundamental for understanding the jet dynamics, nonthermal emission, and long-term stability. However, the role of the jet magnetic field in this process is unclear. In particular, it is still debated whether the magnetic field favors jet collimation or triggers more instabilities that can jeopardize the jet evolution outside the binary.
Aims. We study the dynamical role of weak and moderate to strong toroidal magnetic fields during the first several hundred seconds of jet propagation through the stellar wind, focusing on the magnetized flow dynamics and the mechanisms of energy conversion.
Methods. We developed the code Lóstrego v1.0, a new 3D relativistic magnetohydrodynamics code to simulate astrophysical plasmas in Cartesian coordinates. Using this tool, we performed the first 3D relativistic magnetohydrodynamics numerical simulations of relativistic magnetized jets propagating through the clumpy stellar wind in a high-mass X-ray binary. To highlight the effect of the magnetic field in the jet dynamics, we compared the results of our analysis with those of previous hydrodynamical simulations.
Results. The overall morphology and dynamics of weakly magnetized jet models is similar to previous hydrodynamical simulations, where the jet head generates a strong shock in the ambient medium and the initial overpressure with respect to the stellar wind drives one or more recollimation shocks. On the timescales of our simulations (i.e., t < 200 s), these jets are ballistic and seem to be more stable against internal instabilities than jets with the same power in the absence of fields. However, moderate to strong toroidal magnetic fields favor the development of current-driven instabilities and the disruption of the jet within the binary. A detailed analysis of the energy distribution in the relativistic outflow and the ambient medium reveals that magnetic and internal energies can both contribute to the effective acceleration of the jet. Moreover, we verified that the jet feedback into the ambient medium is highly dependent on the jet energy distribution at injection, where hotter, more diluted and/or more magnetized jets are more efficient. This was anticipated by feedback studies in the case of jets in active galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.