Deep Neural Network (DNN)-based vision systems could improve passenger transportation safety by automating processes such as verifying the correct positioning of luggage, seat occupancy, etc. Abundant and well-distributed data are essential to make DNNs learn appropriate pattern recognition features and have enough generalization ability. The use of synthetic data can reduce the effort of generating varied and annotated data. However, synthetic data usually present a domain gap with real-world samples, that can be reduced with domain adaptation techniques. This paper proposes a methodology to build simulated environments to generate balanced and varied synthetic data and avoid including redundant samples to train classification DNNs for passenger seat analysis. We show a practical implementation for detecting whether luggage is correctly placed or not in an aircraft cabin. Experimental results show the contribution of the synthetic samples and the importance of correctly discarding redundant data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.