Blood indicators are used as a tool to diagnose metabolic disorders. The present work was conducted to study the relationships among blood indicators of lipomobilization and hepatic function in high-yielding dairy cows. Two groups of Holstein cows were studied: 27 early lactation cows and 14 mid lactation cows from four different herds with similar husbandry characteristics in Galicia, Spain. Blood samples were obtained to measure beta-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), triglycerides (TG), and the activity of aspartate transaminase (AST) and gamma-glutamyl transferase. Cows in early lactation had higher levels of BHB and NEFA than mid lactation cows. High lipomobilization (NEFA > 400 µmol/L) was detected in 67% and 7% of early lactation and mid lactation cows, respectively, while subclinical ketosis (BHB > 1.2 mmol/L) was detected in 41% and 28% of the early lactation and lactation cows, respectively. TG concentrations were low in all cows suffering subclinical ketosis and in 61% of the cows with high lipomobilization. During early lactation, 30% of cows suffered hepatic lipidosis as detected by levels of AST. Compromised hepatic function was observed in early lactation cows as shown by lower concentrations of glucose, total protein, and urea.
SummaryDairy cows are especially vulnerable to health disorders during the transition period, when they shift from late pregnancy to the onset of lactation. Diseases at this stage affect not only the animals' well-being, but also cause a major economic impact in dairy farms, because apart from treatment costs, affected cows will not reach their peak milk-producing capacity. The overproduction of reactive oxygen species (ROS) leads to oxidative stress, which has been identified as an underlying factor of dysfunctional inflammatory responses. Supplementation with vitamins and trace elements attempts to minimize the harmful consequences of excessive ROS production, thereby trying to improve animals' health status and to reduce disease incidence. However, results regarding the effects of supplementing antioxidants on dairy cows' health and performance have been inconsistent, because in most cases, the antioxidant potential of the animals was not assessed beforehand and the nutritional strategy planned accordingly. Therefore, reviewing the physiological and harmful effects of ROS production, along with the different options available for assessing the redox balance in dairy cattle and some of the key findings of different supplementation trials, could bring one step forward the on-farm application of determinations of oxidative status for establishing nutritional strategies early enough in the dry period that could improve transition cow health.
Oxidative stress (OS) plays a key role in the initiation or progression of numerous diseases, and dairy cows undergo OS at the transition period. However, discrepancies between methodologies make it difficult to make comparisons between studies, and therefore research on this topic may not be implemented in farms. This study aims to test under field conditions the use of an oxidative stress index (OSi) as a combined measurement through a ratio between pro-oxidants and antioxidants throughout the transition period in dairy farms. Serum samples of high-yielding dairy cows were taken, and markers of oxidative damage and antioxidant capacity were measured in four different production stages: (i) late lactation ( LL; 22 to 21 months); (ii) prepartum ( PrP; 21 month until parturition); (iii) postpartum ( PsP; delivery to 11 month); and (iv) peak of lactation ( PkL; 11 to 12.5 months). Values were compared between production stages and against a metabolic baseline status (CTR, 4th to 5th month of gestation). To the best of our knowledge, this is the first report in the literature that discusses the values of these oxidative stress biomarkers (and the OS index) for cows with low metabolic demands, as to date most research in this area has focused on the transition period. With the joint evaluation through the OSi, differences were found that were not present with the separate evaluation of pro-oxidants or antioxidants, thus supporting our hypothesis that the OSi indicates more accurately the oxidative status of the animals. It was also confirmed that dairy cows undergo OS after parturition, and that antioxidant supplementation from 1 month before parturition until the peak of lactation may be needed to reduce the risk of OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.