Figure 1. Programmable liquid matter making nonlinear shape of alphabet "S". 7x7 electrodes array dynamic switching to control EGaIn to make an 'S' shape. ABSTRACTIn this paper, we demonstrate a method for the dynamic 2D transformation of liquid matter and present unique organic animations based on spatio-temporally controlled electric fields.In particular, we deploy a droplet of liquid metal (Gallium indium eutectic alloy) in a 7x7 electrode array prototype system, featuring an integrated image tracking system and a simple GUI. Exploiting the strong dependance of EGaIn's surface tension on external electric voltages, we control multiple electrodes dynamically to manipulate the liquid metal into a fine-grained desired shape. Taking advantage of the high conductivity of liquid metals, we introduce a shape changing, reconfigurable smart circuit as an example of unique applications. We discuss system constraints and the overarching challenge of controlling liquid metals in the presence of phenomena such as splitting, self-electrode interference and finger instabilities. Finally, we reflect on the broader vision of this project and discuss our work in the context of the wider scope of programmable materials.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.