Physiological signals are strongly related to a person’s state of health and carry information about the human body. For example, by ECG, it is possible to obtain information about cardiac disease, emotions, personal identification, and the sex of a person, among others. This paper proposes the study of the heartbeat from a soft-biometric perspective to be applied to smartphone unlocking services. We employ the user heartbeat to classify the individual by sex (male, female) with the use of Deep Learning, reaching an accuracy of 94.4% ± 2.0%. This result was obtained with the RGB representation of the union of the time-frequency transformation from the pseudo-orthogonal X, Y, and Z bipolar signals. Evaluating each bipolar contribution, we found that the XYZ combination provides the best category distinction using GoogLeNet. The 24-h Holter database of the study contains 202 subjects with a female size of 49.5%. We propose an architecture for managing this signal that allows the use of a few samples to train the network. Due to the hidden nature of ECG, it does not present vulnerabilities like public trait exposition, light/noise sensibility, or learnability compared to fingerprint, facial, voice, or password verification methods. ECG may complement those gaps en route to a cooperative authentication ecosystem.
Human sex recognition with electrocardiogram signals is an emerging area in machine learning, mostly oriented toward neural network approaches. It might be the beginning of a field of heart behavior analysis focused on sex. However, a person’s heartbeat changes during daily activities, which could compromise the classification. In this paper, with the intention of capturing heartbeat dynamics, we divided the heart rate into different intervals, creating a specialized identification model for each interval. The sexual differentiation for each model was performed with a deep convolutional neural network from images that represented the RGB wavelet transformation of ECG pseudo-orthogonal X, Y, and Z signals, using sufficient samples to train the network. Our database included 202 people, with a female-to-male population ratio of 49.5–50.5% and an observation period of 24 h per person. As our main goal, we looked for periods of time during which the classification rate of sex recognition was higher and the process was faster; in fact, we identified intervals in which only one heartbeat was required. We found that for each heart rate interval, the best accuracy score varied depending on the number of heartbeats collected. Furthermore, our findings indicated that as the heart rate increased, fewer heartbeats were needed for analysis. On average, our proposed model reached an accuracy of 94.82% ± 1.96%. The findings of this investigation provide a heartbeat acquisition procedure for ECG sex recognition systems. In addition, our results encourage future research to include sex as a soft biometric characteristic in person identification scenarios and for cardiology studies, in which the detection of specific male or female anomalies could help autonomous learning machines move toward specialized health applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.