Abstract. The growing awareness of serious difficulties in the learning of energy issues has produced a great deal of research, most of which is focused on specific conceptual aspects. In our opinion, the difficulties pointed out in the literature are interrelated and connected to other aspects (conceptual as well as procedural and axiological), which are not sufficiently taken into account in previous research. This paper aims to carry out a global analysis in order to avoid the more limited approaches that deal only with individual aspects. From this global analysis we have outlined 24 propositions that are put forward for debate to lay the foundations for a profound reorientation of the teaching of energy topics in upper high school courses, in order to facilitate a better scientific understanding of these topics, avoid many students' misconceptions and enhance awareness of the current situation of planetary emergency.
We present measurements of Raman linewidths in the fundamental Q branch of CO for mixtures with Ar at temperatures of 77, 195, and 300 K, recorded using an inverse Raman spectrometer. Starting from a recent ab initio potential energy surface, theoretical values of Ar broadening coefficients for CO infrared and Raman lines (isotropic and anisotropic components) at temperatures in the range 77 to 1100 K are calculated via quantum-mechanical methods. The relative merits of the close coupling theoretical results over the coupled states results are underlined. Finally, a comparison of the calculated pressure broadening coefficients is made with the present experimental data as well as with recently available infrared data. There is general agreement between the calculated and measured values of the broadenings for all the temperatures probed. We conclude that the temperature dependence of the infrared and Raman broadening coefficients have been correctly determined theoretically and may be used to test a common temperature scaling law.
A new set of wavenumbers for the Stimulated Raman Spectrum (SRS) of the ν1 band of 12CH4 is presented using the Infrared (IR) absorption spectrum of the P10 component of ν3 of the same molecule as a wavenumbers standard. An estimation of the Stark shift due to the pump laser field is experimentally deduced what allows to extrapolate the measured wavenumbers to zero field amplitude. A careful discussion about the main possible error sources and how to cope with them is also included.The absolute accuracy of the wavenumbers set presented here is believed to be at least one order of magnitude better as compared with previous measurement.
The transition dipole moment of the v3 band of the methyl radical has been measured for the first time. A new discharge laser amplitude double modulation method with a difference frequency laser spectrometer and a hollow cathode discharge cell has been used. The CH3 concentration has been estimated from the absorption decay when the discharge is turned off. The transition dipole moment is found to be pv, = 0.029 f 0.005 D.
A tunable microwave-sideband CO2 laser is used with an electric-resonance optothermal spectrometer to investigate the infrared spectrum of CF3CH3 near 970 cm−1. A Fermi-coupled triad of states is observed, resulting from the interactions of 2ν6+ν11 and ν5+ν12 with the fundamental vibration, ν10, which is assumed to carry the oscillator strength in this region. The high resolution (∼3 MHz) of the spectrometer allows the observation of tunneling splittings associated with the ν6 torsional vibration. These splittings are used to identify the torsional character of the states observed. At the normal-mode level the ν10 and ν5+ν12 states are found to be nearly degenerate and interacting by an anharmonic matrix element of ∼3 cm−1. The lower-energy component of this diad exhibits torsional splittings of up to 400 MHz due to an anharmonic coupling of 0.70 cm−1 with the lower energy 2ν6+ν11 state which has an intrinsic tunneling splitting of ∼800 MHz. A fourth state, 3ν6+ν12, which has a still larger zeroth-order tunneling splitting, may also be affecting the torsional splittings of the observed states. The present investigation illustrates the utility of using resolved torsional splittings to unravel complex vibrational couplings in molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.