We propose guidelines for the design of improved bimetallic (and related) electrocatalysts for the oxygen reduction reaction (ORR) in acidic media. This guide is based on simple thermodynamic principles assuming a simple mechanism where one metal breaks the oxygen-oxygen bond of molecular O(2) and the other metal acts to reduce the resulting adsorbed atomic oxygen. Analysis of the Gibbs free energies of these two reactions guides the selection of combinations of metals that can produce alloy surfaces with enhanced activity for the ORR when compared to the constituent metals. Selected systems have been tested by fabricating arrays of metallic catalysts consisting of various binary and ternary combinations of Pd, Au, Ag, and Co deposited on glassy carbon (GC) substrates. The electrocatalytic activity of these materials for the ORR in acidic medium was examined using scanning electrochemical microscopy (SECM) in a new rapid-imaging mode. This was used to rapidly screen arrays covering a wide range of catalyst compositions for their activity for the ORR in 0.5 M H(2)SO(4). Using the SECM technique, we have identified combinations of metals with enhanced electrocatalytic activities when compared with the constituent, pure metals. Addition of Co to Pd, Au, and Ag clearly decreases the ORR overpotential, in agreement with the proposed model. Catalyst spots that exhibited enhanced electrocatalytic activity in the SECM screening technique were then examined using classical rotating disk electrode (RDE) experiments. The activity of carbon black supported catalyst mixtures on a GC RDE and the electrocatalytic activity determined using the SECM screening technique showed excellent agreement. C/Pd-Co electrodes (10-30% Co) exhibited remarkable activity for ORR catalysis, close to that of carbon-supported Pt.
Fuel cells are appealing for a variety of energy needs, but the high materials and manufacturing costs have hampered their commercialization. The limited availability and the high cost of the currently used platinum catalysts, for example, pose a serious problem in their practical application. We report here non-platinum electrocatalyst systems, such as Pd-Co-Au and Pd-Ti, that are proposed from simple thermodynamic guidelines and selected by a rapid screening technique, which show electrochemical performance in proton exchange membrane fuel cells (PEMFC) similar to that found with commercial platinum catalysts. This finding opens up a new avenue to develop potentially less expensive electrocatalysts.
The first enzyme-based catalyst that is superior to platinum in the four-electron electroreduction of oxygen to water is reported. The smooth Pt cathode reached half and 90% of the mass transport-limited current density at respective overpotentials of -0.4 and -0.58 V in 0.5 M sulfuric acid, and only at even higher overpotentials in pH 7.2 phosphate buffer. In contrast, the smooth "wired" bilirubin oxidase cathode reached half and 90% of the mass transport-limited current density at respective overpotentials as low as -0.2 and -0.25 V. The mass transport-limited current density for the smooth "wired" enzyme cathode in PBS was twice that with smooth Pt in 0.5 M sulfuric acid. Under 1 atm O2 pressure, O2 was electroreduced to water on a polished carbon cathode, coated with the "wired" BOD film, in pH 7.2 saline buffer (PBS) at an overpotential of -0.31 V at a current density of 9.5 mA cm-2. At the same overpotential, the current density of the polished platinum cathode in 0.5 M H2SO4 was 16-fold lower, only 0.6 mA cm-2.
We were able to identify a tight subgroup of patients with OA, characterised by an increased inflammatory response that could be regulated by epigenetics. The identification and isolation of this subgroup may be critical for the development of effective treatment and disease prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.