Abstract-Wireless communications systems with progressively higher spectral efficiency have been investigated in past decades. A promising area of research is the use of hypercomplex algebras, notably, the use of the quaternion algebra. This paper considers the construction of multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) using the algebra of quaternions. Several construction techniques for quaternion orthogonal code designs have been proposed in recent years, which offer the possibility to explore diversities in various domains, such as space, time, frequency, and polarization, in addition to combinations thereof. This paper presents a formulation for quaternion MIMO-OFDM in matrix form as an extension of the classical formulation that uses complex variables. Quaternions allow elegant representation of pairs of radiant elements in physical antennas configured for crosspolarized propagation. Several simulations validate the proposed method in diverse scenarios for wireless communications, in which combined diversities have been exploited.
ResumoA presente pesquisa visa estudar o uso da álgebra hipercomplexa de quatérnions para a teoria de comunicações, deu-se ênfase aos conceitos de amplitude e frequência instantâneas complexas decorrentes da definição da Transformada Quaterniônica de Fourier (QFT), e do sinal hiper-analítico. Como resultado do estudo feito é apresentado o conceito de Modulação de Amplitude Ortocomplexa (OAM), assim como são propostos algoritmos de detecção do envoltório, tanto para os casos de transmissão com ou sem portadora. Na pesquisa foram reescritas as equações da decomposição polar de Cayley Dickson de modo que apresentem uma interpretação geométrica útil para o analise da modulação OAM e para o desenvolvimento dos algoritmos mencionados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.