We give theoretical foundation to torque densities proposed in the past, like the one used by Beth to study experimentally the action of circularly polarized radiation on a birefringent material, or that proposed by Mansuripur to resolve a seeming paradox concerning the Lorentz force law and relativity. Our results provide new insights into electromagnetic theory, since they provide a unified and general treatment of the balance of lineal and angular momentum that permits a better assessment of some torques. Thus in this work we extend the derivations we have made of balance equations for electromagnetic linear momentum to balance equations for electromagnetic angular momentum. These balance equations are derived from the macroscopic Maxwell equations by means of vector and tensor identities and from the different ways in which these equations are written in terms of fields E, D, B, and H, as well as polarizations P, and M. Therefore these balance equations are as sound as the macroscopic Maxwell equations, with the limitations of the constitutive relations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.