BackgroundCurrently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Despite the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process.ResultsWe have examined several physiological aspects related to acetate assimilation in the context of hydrogen production metabolism. Measurements of oxygen and CO2 levels, acetate uptake, and cell growth were performed under different light conditions, and oxygenic regimes. We show that oxygen and light intensity levels control acetate assimilation and modulate hydrogen production. We also demonstrate that the determination of the contribution of the PSII-dependent hydrogen production pathway in mixotrophic cultures, using the photosynthetic inhibitor DCMU, can lead to dissimilar results when used under various oxygenic regimes. The level of inhibition of DCMU in hydrogen production under low light seems to be linked to the acetate uptake rates. Moreover, we highlight the importance of releasing the hydrogen partial pressure to avoid an inherent inhibitory factor on the hydrogen production.ConclusionLow levels of oxygen allow for low acetate uptake rates, and paradoxically, lead to efficient and sustained production of hydrogen. Our data suggest that acetate plays an important role in the hydrogen production process, during non-stressed conditions, other than establishing anaerobiosis, and independent of starch accumulation. Potential metabolic pathways involved in hydrogen production in mixotrophic cultures are discussed. Mixotrophic nutrient-replete cultures under low light are shown to be an alternative for the simultaneous production of hydrogen and biomass.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0341-9) contains supplementary material, which is available to authorized users.
Microalgae are capable of biological H2 photoproduction from water, solar energy, and a variety of organic substrates. Acclimation responses to different nutrient regimes finely control photosynthetic activity and can influence H2 production. Hence, nutrient stresses are an interesting scenario to study H2 production in photosynthetic organisms. In this review, we mainly focus on the H2-production mechanisms in Chlamydomonas reinhardtii and the physiological relevance of the nutrient media composition when producing H2.
BackgroundA recent Commentary article entitled “On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions” by Dr. Scoma and Dr. Tóth, Biotechnology for Biofuels (2017), opened a very interesting debate about the H2 production photosynthetic-linked pathways occurring in Chlamydomonas cultures grown in acetate-containing media and incubated under hypoxia/anoxia conditions. This Commentary article mainly focused on the results of our previous article “Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures,” by Jurado-Oller et al., Biotechnology for Biofuels (7, 2015; 8:149).Main bodyHere, we review some previous knowledge about the H2 production pathways linked to photosynthesis in Chlamydomonas, especially focusing on the role of the PSII-dependent and -independent pathways in acetate-containing nutrient-replete cultures. The potential contributions of these pathways to H2 production under anoxia/hypoxia are discussed.ConclusionDespite the fact that the PSII inhibitor DCMU is broadly used to discern between the two different photosynthetic pathways operating under H2 production conditions, its use may lead to distinctive conclusions depending on the growth conditions. The different potential sources of reductive power needed for the PSII-independent H2 production in mixotrophic nutrient-replete cultures are a matter of debate and conclusive evidences are still missing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.