The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3 end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, -glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses.
The lactose operon, lacTEGF, of Lactobacillus casei ssp. casei ATCC393 [pLZ15-] is encoding an antiterminator protein (LacT), the elements (LacE and LacF) of the lactose-specific phosphotransferase system (PTS) and a phospho-β-galactosidase (LacG). The lac operon is repressed by glucose and fructose and is induced by lactose, through the PTS/CcpA signal transduction system and an antiterminator mechanism, respectively. Furthermore, the antiterminator activity of LacT is also negatively modulated possibly by a PTS-mediated phosphorylation event. These strong regulatory mechanisms have been used in this work for the design of expression systems. Hence, Bacillus licheniformis α-amylase has been efficiently expressed from pIAβ5lacamy on lactose grown cells. Furthermore, a food-grade mutant, expressing Lactococcus lactis acetohydroxy acid synthase genes (ilvBN), was obtained with an integrative system, developed using lacG and lacF as homologous sequences for recombination. As a result, ilvBN genes were integrated in tandem between lacG and lacF in the chromosome and were co-ordinately expressed with the genes of the lactose operon. Lactobacillus / lactose expression system / replicative vector / integrative vector Résumé-Usage des éléments régulateurs de l'opéron lactose pour l'expression de gènes chez Lactobacillus casei. Les gènes du lactose Lactobacillus casei ssp. casei ATCC393 [pLZ15-] sont regroupés dans un même opéron, lacTEGF, codant pour un antiterminateur (LacT), pour les éléments spécifiques du transport du lactose par le système phosphotransferase dépendant du phosphoénolpyruvate (PTS) (LacE et LacF) et pour une phospho-β-galactosidase (LacG). L'opéron lac est soumis à une répression par le glucose et le fructose via le système de transduction de signal PTS/CcpA et à une induction par le lactose au moyen d'un mécanisme d'antiterminaison. De plus, l'activité de l'antiterminateur est aussi négativement modulée possiblement par un événement de phosphorylation étant impliqué le PTS. Dans ce travail, on a utilisé ces mécanismes régulateurs pour la construction de systèmes d'expression. Avec le vecteur pIAβ5lacamy, on a obtenu l'expression de l'α-amylase de Bacillus licheniformis à partir des éléments régulateurs de l'opéron lactose. On a aussi construit un vecteur intégratif utilisant les gènes lacG et lacF comme séquence homologue
Objective: To evaluate the phenotype and genotype characteristic of patients included in the Andalusian Registry for familial adenomatous polyposis, the genotype/phenotype correlation and the impact of Registry in the frequency of colorectal cancer of registered. Material and methods: A descriptive study of 77 patients with FAP belonging to 33 families, included in a centralized database visited by the physicians of the hospitals taking part in the present study, on prior signing of confidentiality letters. All genetic studies were carried out in the Immunology Service of our institution. Results: We have included in our study 77 patients of 33 families; 31 probands with a mean age of 32 years (13-51) and 46 relatives at risk with a mean age of 21.8 years (6-55). Genetic study informed in 68/77 with positive result in 92.6%. Ten probands showed colorectal cancer (CRC) at the time of diagnosis (32.2%). Only two affected relatives showed CRC at diagnosis (4.3%), a statistically significant difference (p < 0.05). Gastrointestinal involvement was observed in 30/61 (49%), desmoid tumors in 7/77 (9.1%) and congenital hypertrophy of the retinal pigment epithelium in 23/55 (65.7%). 86.7% of patients with this alteration showed mutations between codons 454 and 1019, with a statistically significant correlation ((p< 0.05). Conclusions: The registry has facilitated the genetic diagnosis for all affected families disregard their province of origin. It has also improved the screening of affected relatives and has made it possible to take preventive measures immediately, therefore diminishing the incidence of CRC at diagnosis in registered affected relatives. The correlation between congenital hypertrophy of the retinal pigment epithelium with some mutations is the only phenotypic-genotypic correlation with statistical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.