[1] This paper investigates strategies to alleviate the effects of droughts on the profitability and sustainability of irrigated agriculture. These strategies include conjunctive management of surface water and groundwater resources, and engineered improvements such as lining of irrigation canals and addition of regional pumping well capacity. A spatially distributed simulation-optimization model was developed for an irrigated system consisting of multiple surface water reservoirs and an alluvial aquifer. The simulation model consists of an agronomic component and simulators describing the hydrologic system. The physical models account for storage and flow through the reservoirs, routing through the irrigation canals, and regional groundwater flow. The agronomic model describes crop productivity as a function of irrigation quantity and salinity, and determines agricultural profit. A profit maximization problem was formulated and solved using large-scale constrained gradient-based optimization. The model was applied to a real-world conjunctive surface water/groundwater management problem in the Yaqui Valley, an irrigated agricultural region in Sonora, Mexico. The model reproduces recorded reductions in agricultural production during a historical drought. These reductions were caused by a decline in surface water availability and limited installed pumping capacity. Results indicate that the impact of the historical 8-year drought could have been significantly reduced without affecting profit in wet years by better managing surface water and groundwater resources. Namely, groundwater could have been more heavily relied upon and surface water allocation capped at a sustainable level as an operating rule. Lining the irrigation canals would have resulted in water savings of 30% of historical reservoir releases during wet years, which could have been used in subsequent drier years to increase agricultural production. The benefits of a greater reliance on groundwater pumping by installing additional wells are limited due to pumping restrictions near the coast to avoid seawater intrusion and due to increased pumping costs.
[1] We develop optimal conjunctive use water management strategies that balance two potentially conflicting objectives: sustaining irrigated agriculture during droughts and minimizing unnecessary spills and resulting water losses from the reservoir during wet periods. Conjunctive use is specified by a linear operating rule, which determines the maximum surface water release as a function of initial reservoir storage. Optimal strategies are identified using multiobjective interannual optimization for sustainability and spill control, combined with gradient-based annual profit maximization. Application to historical conditions in the irrigated system of the Yaqui Valley, Mexico, yields a Pareto curve of solutions illustrating the trade-off between sustaining agriculture and minimizing spills and water losses. Minimal water losses are obtained by maximizing surface water use and limiting groundwater pumping, such that reservoir levels are kept sufficiently low. Maximum agricultural sustainability, on the other hand, results from increased groundwater use and keeping surface water reservoir levels high during wet periods. Selected optimal operating rules from the multiobjective optimization are tested over a large number of equally probable streamflow time series, generated with a stochastic time series model. In this manner, statistical properties, such as the mean sustainability and sustainability percentiles, are determined for each optimal rule. These statistical properties can be used to select rules for water management that are reliable over a wide range of streamflow conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.