Control charts are used to visually identify the signals that define the behavior of industrial processes in univariate cases. However, whenever the statistical quality of more than one critical variable needs to be monitored simultaneously, the procedure becomes much more complicated. This paper presents a methodology on multivariate pattern recognition using the Mahalanobis distance (D2) and the Support Vector Machine (SVM) technique to recognise two multivariate patterns. The relevance of the study lies in the monitoring of the variables while considering the correlation between them and the effects of interchangeably using a stable multivariate case against an unstable pattern that results in recognition rates up to 91.6%.
Fast object recognition and classification is highly important when handling operations with robots. This article shows the design and implementation of an invariant recognition machine vision system to compute a descriptive vector called the Boundary Object Function (BOF) using the FuzzyARTMAP (FAM) Neural Network. The object recognition machine is integrated in the Zybo Z7-20 module that includes reconfigurable FPGA hardware and a RISC processor. Object encoding, description and prediction is carried out rapidly compared to the processing time devoted to video capture at the camera’s frame rate. Benefiting from parallel computing, we calculated the object’s centroid and boundary points while acquiring the progressive image frame; all that was done with the intention of readying it for neural processing. The remaining time was devoted to recognising the object, this caused low latency (1.47 ms). Our test-bed also included TCP/IP communication to send/receive part location for grasping operations with an industrial robot to evaluate the approach. Results demonstrate that the hardware integration of the video sensor, image processing, descriptor generator, and the ANN classifier for cognitive decision on a single chip can increase the speed and performance of intelligent robots designed for smart manufacturing.
Industrial robots have mainly been programmed by operators using teach pendants in a pointto-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) techniques. Robot skill acquisition using LfD techniques is characterised by a high-level stage in charge of learning connected actions and a low-level stage concerned with motor coordination and reproduction of an observed path. In this paper, we present an approach to acquire a path-following skill by a robot in the low-level stage which deals with the correspondence of mapping links and joints from a human operator to a robot so that the robot can actually follow a path. We present the design of an Inertial Measurement Unit (IMU) device that is primarily used as an input to acquire the robot skill. The approach is validated using a motion capture system as ground truth to assess the spatial deviation from the human-taught path to the robot's final trajectory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.