We present the results of prompt optical follow-up of the electromagnetic counterpart of the gravitational-wave event GW170817 by the Transient Optical Robotic Observatory of the South Collaboration. We detected highly significant dimming in the light curves of the counterpart (g 0.17 0.03 D = mag, r 0.14 0.02 D = mag, i 0.10 0.03 D = mag) over the course of only 80 minutes of observations obtained ∼35 hr after the trigger with the T80-South telescope. A second epoch of observations, obtained ∼59 hr after the event with the EABA 1.5 m telescope, confirms the fast fading nature of the transient. The observed colors of the counterpart suggest that this event was a "blue kilonova" relatively free of lanthanides.
The Southern Photometric Local Universe Survey (S-PLUS) is imaging ∼9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8 m robotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 $\rm {\mu m}$ pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel−1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| > 30°, 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, H δ, G band, Mg b triplet, H α, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (δz/(1 + z) = 0.02 or better) for galaxies with r < 19.7 AB mag and z < 0.4, thus producing a 3D map of the local Universe over a volume of more than $1\, (\mathrm{Gpc}/h)^3$. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ∼336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.
We search for extragalactic sources in the VISTA Variables in the Vía Láctea survey that are hidden by the Galaxy. Herein, we describe our photometric procedure to find and characterize extragalactic objects using a combination of SExtractor and PSFEx. It was applied in two tiles of the survey: d010 and d115, without previous extragalactic IR detections, in order to obtain photometric parameters of the detected sources. The adopted criteria to define extragalactic candidates include CLASS STAR < _ 0 . 3 ; 1.0 < < R 5.0 arcsec; 1 2 2.1 <C <5; and F > 0.002 and the colors: 0.5 <(J-K s ) <2.0 mag; 0.0 <(J-H) <1.0 mag; 0.0 <(H-K s ) <2.0 mag and (J-H) + 0.9 (H-K s ) > 0.44 mag. We detected 345 and 185 extragalactic candidates in the d010 and d115 tiles, respectively. All of them were visually inspected and confirmed to be galaxies. In general, they are small and more circular objects, due to the near-IR sensitivity to select more compact objects with higher surface brightness. The procedure will be used to identify extragalactic objects in other tiles of the VVV disk, which will allow us to study the distribution of galaxies and filaments hidden by the Milky Way.
This is the third of a series of papers of low X-ray luminosity galaxy clusters. In this work we present the weak lensing analysis of eight clusters, based on observations obtained with the Gemini Multi-Object Spectrograph in the g ′ , r ′ and i ′ passbands. For this purpose, we have developed a pipeline for the lensing analysis of ground-based images and we have performed tests applied to simulated data. We have determined the masses of seven galaxy clusters, six of them measured for the first time. For the four clusters with availably spectroscopic data, we find a general agreement between the velocity dispersions obtained via weak lensing assuming a Singular Isothermal Sphere profile, and those obtained from the redshift distribution of member galaxies. The correlation between our weak lensing mass determinations and the X-ray luminosities are suitably fitted by other observations of the M − L X relation and models.
We present a comparison of several Difference Image Analysis (DIA) techniques, in combination with Machine Learning (ML) algorithms, applied to the identification of optical transients associated to gravitational wave events. Each technique is assessed based on the scoring metrics of Precision, Recall, and their harmonic mean F1, measured on the DIA results as standalone techniques, and also in the results after the application of ML algorithms, on transient source injections over simulated and real data. This simulations cover a wide range of instrumental configurations, as well as a variety of scenarios of observation conditions, by exploring a multi dimensional set of relevant parameters, allowing us to extract general conclusions related to the identification of transient astrophysical events.The newest subtraction techniques, and particularly the methodology published in Zackay et al. (2016) are implemented on an Open Source Python package, named properimage, suitable for many other astronomical image analyses. This together, with the ML libraries we describe, provides an effective transient detection software pipeline. Here we study the effects of the different ML techniques, and the relative feature importances for classification of transient candidates, and propose an optimal combined strategy. This constitutes the basic elements of pipelines that could be applied in searches of electromagnetic counterparts to GW sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.