Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.
BackgroundCodon usage and codon-pair context are important gene primary structure features that influence mRNA decoding fidelity. In order to identify general rules that shape codon-pair context and minimize mRNA decoding error, we have carried out a large scale comparative codon-pair context analysis of 119 fully sequenced genomes.Methodologies/Principal FindingsWe have developed mathematical and software tools for large scale comparative codon-pair context analysis. These methodologies unveiled general and species specific codon-pair context rules that govern evolution of mRNAs in the 3 domains of life. We show that evolution of bacterial and archeal mRNA primary structure is mainly dependent on constraints imposed by the translational machinery, while in eukaryotes DNA methylation and tri-nucleotide repeats impose strong biases on codon-pair context.ConclusionsThe data highlight fundamental differences between prokaryotic and eukaryotic mRNA decoding rules, which are partially independent of codon usage.
With the proliferation of social networks and blogs, the Internet is increasingly being used to disseminate personal health information rather than just as a source of information. In this paper we exploit the wealth of user-generated data, available through the micro-blogging service Twitter, to estimate and track the incidence of health conditions in society. The method is based on two stages: we start by extracting possibly relevant tweets using a set of specially crafted regular expressions, and then classify these initial messages using machine learning methods. Furthermore, we selected relevant features to improve the results and the execution times. To test the method, we considered four health states or conditions, namely flu, depression, pregnancy and eating disorders, and two locations, Portugal and Spain. We present the results obtained and demonstrate that the detection results and the performance of the method are improved after feature selection. The results are promising, with areas under the receiver operating characteristic curve between 0.7 and 0.9, and f-measure values around 0.8 and 0.9. This fact indicates that such approach provides a feasible solution for measuring and tracking the evolution of health states within the society.
BackgroundAutomatic recognition of biomedical names is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. In recent years, various solutions have been implemented to tackle this problem. However, limitations regarding system characteristics, customization and usability still hinder their wider application outside text mining research.ResultsWe present Gimli, an open-source, state-of-the-art tool for automatic recognition of biomedical names. Gimli includes an extended set of implemented and user-selectable features, such as orthographic, morphological, linguistic-based, conjunctions and dictionary-based. A simple and fast method to combine different trained models is also provided. Gimli achieves an F-measure of 87.17% on GENETAG and 72.23% on JNLPBA corpus, significantly outperforming existing open-source solutions.ConclusionsGimli is an off-the-shelf, ready to use tool for named-entity recognition, providing trained and optimized models for recognition of biomedical entities from scientific text. It can be used as a command line tool, offering full functionality, including training of new models and customization of the feature set and model parameters through a configuration file. Advanced users can integrate Gimli in their text mining workflows through the provided library, and extend or adapt its functionalities. Based on the underlying system characteristics and functionality, both for final users and developers, and on the reported performance results, we believe that Gimli is a state-of-the-art solution for biomedical NER, contributing to faster and better research in the field. Gimli is freely available at http://bioinformatics.ua.pt/gimli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.