Herbaceous crop yield intensification creates favourable conditions for the development of pests that intensify the attack of soil pathogens traditionally controlled by disinfectant, which are mostly prohibited and unlisted because of their toxicity. The use of grafted plants solves this problem and assists in addressing abiotic stress conditions. Within Solanaceae, specifically tomato crops (Solanum lycopersicum), the use of the splicing technique (simple and easily automated) is of special interest. This experiment attempts to present the combined influence of cutting angle and different random diameters on grafting success with the objective of detecting an optimum working range that will be applicable to automated and robotic grafting systems. An increase in the grafting angle is associated with a higher survival of grafted plants despite variations in diameter. Moreover, a threshold cutting angle is observed from which the success rate no longer increases but decreases drastically. Therefore, for a given working range with a significant cutting angle, whether the seedlings of origin are similar in diameter is not important, and this factor is more influential outside the optimal cutting angle range.
Horticultural grafting is routinely performed manually, demanding a high degree of concentration and requiring operators to withstand extreme humidity and temperature conditions. This article presents the results derived from adapting the splicing technique for tomato grafting, characterized by the coordinated work of two conventional anthropomorphic industrial robots with the support of low-cost passive auxiliary units for the transportation, handling, and conditioning of the seedlings. This work provides a new approach to improve the efficiency of tomato grafting. Six test rates were analyzed, which allowed the system to be evaluated across 900 grafted units, with gradual increases in the speed of robots work, operating from 80 grafts/hour to over 300 grafts/hour. The results obtained show that a higher number of grafts per hour than the number manually performed by skilled workers could be reached easily, with success rates of approximately 90% for working speeds around 210-240 grafts/hour.
Even though the splicing graft technique is relatively recent, it has become the most commonly used grafting method for solanaceae, and in particular, for tomato. Today, almost everyone has standardized the use of plastic or silicone grafting clips, equipped with manipulating wings and a frontal opening, to ensure proper bonding and allow for wound healing. Numerous factors influence the success or failure of the grafting process, factors such as the seedling varieties combined, climatic conditions, pre-graft and post-graft care, cutting point, cutting angle, pressure of the clips, blade edge, or substrate water content, among others. In this work, several alternatives in the graft assembly and coupling protocol were evaluated. Having studied the different working alternatives for grafting using a robotic system, two modes of joining order were analyzed. It has been shown that there are 20% more recorded successes if one first joins the graft seedlings and then places the grafting clip to guarantee their union. In addition, we studied the different orientation alternatives for the cutting line and the seedling union with respect to the clip opening—there were approximately 10% more successes obtained in grafts where the splice-union cutting line between the two plants faced the clip opening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.