Background
Hydrogen sulfide (H2S) donors are crucial tools not only for understanding the role of H2S in cellular function but also as promising therapeutic agents for oxidative stress-related diseases. This study aimed to explore the effect of amino acid-derived N-thiocarboxyanhydrides (NTAs), which release physiological H2S levels in the presence of carbonic anhydrase, on porcine sperm function during short-term incubation with and without induced oxidative stress. For this purpose, we employed two H2S-releasing NTAs with release half-lives (t1/2) in the range of hours that derived from the amino acids glycine (Gly-NTA) or leucine (Leu-NTA). Because carbonic anhydrase is crucial for H2S release from NTAs, we first measured the activity of this enzyme in the porcine ejaculate. Then, we tested the effect of Gly- and Leu-NTAs at 10 and 1 nM on sperm mitochondrial activity, plasma membrane integrity, acrosomal status, motility, motile subpopulations, and redox balance during short-term incubation at 38 °C with and without a reactive oxygen species (ROS)-generating system.
Results
Our results show that carbonic anhydrase is found both in spermatozoa and seminal plasma, with activity notably higher in the latter. Both Gly- and Leu-NTAs did not exert any noxious effects, but they enhanced sperm mitochondrial activity in the presence and absence of oxidative stress. Moreover, NTAs (except for Leu-NTA 10 nM) tended to preserve the sperm redox balance against the injuries provoked by oxidative stress, which provide further support to the antioxidant effect of H2S on sperm function. Both compounds also increased progressive motility over short-term incubation, which may translate into prolonged sperm survival.
Conclusions
The presence of carbonic anhydrase activity in mammalian spermatozoa makes NTAs promising molecules to investigate the role of H2S in sperm biology. For the first time, beneficial effects of NTAs on mitochondrial activity have been found in mammalian cells in the presence and absence of oxidative stress. NTAs are interesting compounds to investigate the role of H2S in sperm mitochondria-dependent events and to develop H2S-related therapeutic protocols against oxidative stress in assisted reproductive technologies.
Wild birds are hosts of Culicoides from as early on as the nesting stage when constrained to their nests. However, the environmental factors which determine the abundance and composition of Culicoides species within each bird nest are still understudied. We sampled Culicoides from Eurasian blue tit (Cyanistes caeruleus) nests found in 2 types of forests located in southern Spain. Firstly, we monitored the abundance of Culicoides species in bird nests from a dry Pyrenean oak deciduous forest and a humid mixed forest comprising Pyrenean and Holm oaks throughout 2 consecutive years. During the 3rd year, we performed a cross-fostering experiment between synchronous nests to differentiate the role of rearing environment conditions from that of the genetically determined or maternally transmitted cues released by nestlings from each forest. We found 147 female Culicoides from 5 different species in the birds' nests. The abundance of Culicoides was higher in the dry forest than in the humid forest. Culicoides abundance, species richness and prevalence were greater when the nestlings were hatched later in the season. The same pattern was observed in the cross-fostering experiment, but we did not find evidence that nestling's features determined by the forest of origin had any effect on the Culicoides collected. These results support the notion that habitat type has a strong influence on the Culicoides affecting birds in their nests, while some life history traits of birds, such as the timing of reproduction, also influence Culicoides abundance and species composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.