Flexible soft exoskeletons, so-called exosuits, are robotic devices that interact with their users to assist or enhance muscle performance. Their lightweight design and lack of rigid parts allow assisting the user's natural motion without any constraints. They are thereby valuable in carrying out daily labour tasks and performing active stances of rehabilitation. Nonetheless, the usage of these devices in long-term applications demands anatomically adaptive designs and mechanisms to tackle textile artefacts and discrepancies in the human constitution. The soft exoskeleton described in this article is a textile-wearable design that assists shoulder and elbow flexion. The cable-driven actuation is embedded in a jacket by using several textiles and deformable parts. The inconveniences of using textile such as slipping, dampening, and pressure sores are tackled by combining textile layers with force-compliant sewing. The design also includes pieces for cable guidance, anchoring and support. These parts employ different tailoring methods so as to ease fabrication, wearing and cleaning. The motors and electronics, whose design is compatible with textiles too, are placed in a backpack. This configuration reduces forces from loads in motion and weight on the arm. Finally, the last part of the document discusses the preliminary results that have been obtained from four subjects who have worn the device.
This article describes the performance of a flexible resistive sensor network to track shoulder motion. This system monitors every gesture of the human shoulder in its range of motion except rotations around the longitudinal axis of the arm. In this regard, the design considers the movement of the glenohumeral, acromioclavicular, sternoclavicular, and scapulothoracic joints. The solution presented in this work considers several sensor configurations and compares its performance with a set of inertial measurement units (IMUs). These devices have been put together in a shoulder suit with Optitrack visual markers in order to be used as pose ground truth. Optimal configurations of flexible resistive sensors, in terms of accuracy requirements and number of sensors, have been obtained by applying principal component analysis techniques. The data provided by each configuration are then mapped onto the shoulder pose by using neural network algorithms. According to the results shown in this article, a set of flexible resistive sensors can be an adequate alternative to IMUs for multiaxial shoulder pose tracking in open spaces. Furthermore, the system presented can be easily embedded in fabric or wearable devices without obstructing the user's motion.
Flexible exoskeletons, also known as exosuits, are robotic wearable devices intended to help healthy and unhealthy subjects in different tasks, such as daily life activities, load lifting or rehabilitation. A position control is required to assure stability and compliance in all assisted movements. In this paper, the authors propose the use of a flexible position sensor based on differential capacitance measurement as position feedback for the elbow joint in the flexible exoskeleton LUXBIT. This exosuit is controlled in position by a super-twisting sliding mode controller (SMC), which is robust against disturbances. Different movements involved in rehabilitation therapies are performed over three healthy subjects in order to evaluate the exosuit performance using this motion sensor. The measures given by the flexible sensor are compared to the ones obtained by OptiTrack motion capture system, which are used as ground truth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.