Chronic stress promotes cognitive impairment and dendritic spine loss in hippocampal neurons. In this animal model of depression, spine loss probably involves a weakening of the interaction between pre- and postsynaptic cell adhesion molecules, such as N-cadherin, followed by disruption of the cytoskeleton. N-cadherin, in concert with catenin, stabilizes the cytoskeleton through Rho-family GTPases. Via their effector LIM kinase (LIMK), RhoA and ras-related C3 botulinum toxin substrate 1 (RAC) GTPases phosphorylate and inhibit cofilin, an actin-depolymerizing molecule, favoring spine growth. Additionally, RhoA, through Rho kinase (ROCK), inactivates myosin phosphatase through phosphorylation of the myosin-binding subunit (MYPT1), producing actomyosin contraction and probable spine loss. Some micro-RNAs negatively control the translation of specific mRNAs involved in Rho GTPase signaling. For example, miR-138 indirectly activates RhoA, and miR-134 reduces LIMK1 levels, resulting in spine shrinkage; in contrast, miR-132 activates RAC1, promoting spine formation. We evaluated whether N-cadherin/β-catenin and Rho signaling is sensitive to chronic restraint stress. Stressed rats exhibit anhedonia, impaired associative learning, and immobility in the forced swim test and reduction in N-cadherin levels but not β-catenin in the hippocampus. We observed a reduction in spine number in the apical dendrites of CA1 pyramidal neurons, with no effect on the levels of miR-132 or miR-134. Although the stress did not modify the RAC-LIMK-cofilin signaling pathway, we observed increased phospho-MYPT1 levels, probably mediated by RhoA-ROCK activation. Furthermore, chronic stress raises the levels of miR-138 in accordance with the observed activation of the RhoA-ROCK pathway. Our findings suggest that a dysregulation of RhoA-ROCK activity by chronic stress could potentially underlie spine loss in hippocampal neurons.
Extracellular signal-regulated kinases (ERKs) are widely implicated in multiple physiological processes. Although ERK1/2 has been proposed as a common mediator of antidepressant action in naive rodents, it remains to be determined whether the ERK1/2 pathway plays a role in depressive disorder. Here, we investigated whether chronic restraint stress (14 days) and antidepressant treatment [desipramine (DMI), 10 mg/kg intraperitoneally] induce changes in animal behavior and hippocampal levels of phospho-ERK1/2 and its substrate phospho-cAMP response element-binding protein (CREB). The results indicated that stress-induced depressive-like behaviors were correlated with an increase in P-ERK1/2 and P-CREB in the hippocampus evaluated by immunoblot analysis. As an indication of CREB activity, we evaluated changes in mRNA levels of its target genes. Brain-derived neurotrophic factor (BDNF) mRNA was reduced by stress, an effect prevented by DMI only in the CA3 area of hippocampus. Bcl-2 mRNA was reduced in all hippocampal regions by stress, an effect independent of DMI treatment. However, immunoblot from hippocampal extracts revealed that stress increased BCL-2 levels, an effect prevented by chronic DMI. These results suggest that ERKs and BDNF may be altered in depressive disorder, modifications that are sensitive to DMI action. In contrast, the stress-induced increase in BCL-2 may correspond to a neuroprotective response.
Perceiving and synchronizing to a piece of dance is a remarkable skill in humans. Research in this area is very recent and has been focused mainly on entrainment produced by regular rhythms. Here, we investigated entrainment effects on spectators perceiving a non-rhythmic and extremely slow performance issued from contemporary dance. More specifically, we studied the relationship between subjective experience and entrainment produced by perceiving this type of performance. We defined two types of entrainment. Physiological entrainment corresponded to cardiovascular and respiratory coordinated activities. Cognitive entrainment was evaluated through cognitive tasks that quantified time distortion. These effects were thought to reflect attunement of a participant’ internal temporal clock to the particularly slow pace of the danced movement. Each participant’ subjective experience—in the form of responses to questionnaires—were collected and correlated with cognitive and physiological entrainment. We observe: (a) a positive relationship between psychological entrainment and attention to breathing (their own one or that of dancers); and (b) a positive relationship between cognitive entrainment (reflected as an under-estimation of time following the performance) and attention to their own breathing, and attention to the muscles’ dancers. Overall, our results suggest a close relationship between attention to breathing and entrainment. This proof-of-concept pilot study was intended to prove the feasibility of a quantitative situated paradigm. This research is inscribed in a large-scale interdisciplinary project of dance spectating (labodanse.org).
Several studies have shown that a single exposure to stress may improve or impair learning and memory processes, depending on the timing in which the stress event occurs with relation to the acquisition phase. However, to date there is no information about the molecular changes that occur at the synapse during the stress-induced memory modification and after a recovery period. In particular, there are no studies that have evaluated—at the same time—the temporality of stress and stress recovery period in hippocampal short-term memory and the effects on dendritic spine morphology, along with variations in N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits. The aim of our study was to take a multidimensional approach to investigate concomitant behavioral, morphological and molecular changes induced by a single restraint stress exposure (2.5 h) and a recovery period of 6 and 24 h in rats. We found that acute stress elicited a reduced preference to explore an object placed in a novel position (a hippocampal-dependent task). These changes were accompanied by increased activity of LIM kinase I (LIMK; an actin-remodeling protein) and increased levels of NR2A subunits of NMDA receptors. After 6 h of recovery from stress, rats showed similar preference to explore an object placed in a novel or familiar position, but density of immature spines increased in secondary CA1 apical dendrites, along with a transient rise in GluA2 AMPA receptor subunits. After 24 h of recovery from stress, the animals showed a preference to explore an object placed in a novel position, which was accompanied by a normalization of NMDA and AMPA receptor subunits to control values. Our data suggest that acute stress produces reversible molecular and behavioral changes 24 h after stress, allowing a full reestablishment of hippocampal-related memory. Further studies need to be conducted to deepen our understanding of these changes and their reciprocal interactions.Adaptive stress responses are a promising avenue to develop interventions aiming at restoring hippocampal function impaired by repetitive stress exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.