In the last few years, gene networks have become one of most important tools to model biological processes. Among other utilities, these networks visually show biological relationships between genes. However, due to the large amount of the currently generated genetic data, their size has grown to the point of being unmanageable. To solve this problem, it is possible to use computational approaches, such as heuristics-based methods, to analyze and optimize gene network's structure by pruning irrelevant relationships. In this paper we present a new method, called GeSOp, to optimize large gene network structures. The method is able to perform a considerably prune of the irrelevant relationships comprising the input network. To do so, the method is based on a greedy heuristic to obtain the most relevant subnetwork. The performance of our method was tested by means of two experiments on gene networks obtained from different organisms. The first experiment shows how GeSOp is able not only to carry out a significant reduction in the size of the network, but also to maintain the biological information ratio. In the second experiment, the ability to improve the biological indicators of the network is checked. Hence, the results presented show that GeSOp is a reliable method to optimize and improve the structure of large gene networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.