Until recently, it was considered impossible to feed newly hatched marine fish species with a compound diet. Substituting a compound diet for live prey was performed several weeks after hatching, depending on the species. Compound diets were well ingested at the early stage but larvae died with a gut full of food, suggesting that larvae were unable to digest the compound diet. The hypothesis was that younger larvae have insufficient digestive enzymes to thrive on compound diets, and that exogenous enzymes, provided from live prey, are necessary for early stages. The organogenesis of marine fish larvae is not completely achieved at hatching and histological studies have revealed that the anatomy of the digestive tract undergoes developmental changes over some weeks. Nevertheless, biochemical studies over 20 years have shown that most of the digestive enzymes are present in young larvae. Recent studies have provided better understanding of digestion mechanisms in larvae and have led to proposed dietary compositions meeting larvae nutritional requirements. Pancreatic digestive enzymes are detected before mouth opening. Their synthesis is not induced by diet ingestion, but secretory mechanisms in the pancreas, and so enzymatic action, become efficient chronologically after those of synthesis. Inadequate diets can delay the onset of secretion mechanisms. The ratio of secreted enzymes to total enzymes indicates the nutritional value of the diet ingested by the larvae. At the intestinal level, cytosolic enzymes, which are peptidases, exhibit high activity in the early stages, suggesting a high capacity in larvae to digest protein hydrolysate. Indeed, larvae growth and survival is improved by the incorporation of a moderate concentration of peptide or hydrolysate in the diet. Peptidase activity abruptly decreases around day 25 in sea bass, concurrent with an increase in enzymes of the brush border membranes. This corresponds to a normal maturation process of enterocytes. Compound diets can slightly delay the onset of this maturation process, and inadequate diet can prevent it, leading to near death of the larvae. A proper onset of the maturation process has been associated with high larvae survival. The early developmental stage larvae exhibit high hydrolytic capacity, related to their weight. Enzyme activity pattern is age-dependent, but can be modulated by diet composition. Thus, larvae have the ability to digest and thrive on compound diet, if this diet is well adapted. Larvae have different specificities in digestion and nutritional requirements when compared to juveniles. Taking these specificities into consideration, recent research has led to the formulation of a compound diet that was well adapted for larvae from mouth opening, and could totally replace live prey.
Marine fish larvae undergo major functional and morphological changes during the developmental stages and several factors can interfere with the normal development of larvae and affect fry quality. Skeletal malformations, such as spinal malformation-scoliosis, lordosis, coiled vertebral column-, missing or additional fin rays, bending opercle or jaw malformations, are frequently observed in hatchery-reared larvae. This paper reviews the effects of some nutritional components on skeletal development in larvae of a number of fish species. In the dietary lipid fraction, for instance, it was proven that the phospholipid concentration affected the spinal malformation rate in sea bass fed a compound diet from mouth opening onwards. Phosphatidylinositol, in particular, seems to prevent skeletal deformities. Highly unsaturated fatty acids, and particularly DHA enrichment in live prey, induce a decrease of opercular deformities in milkfish. It is known that highly unsaturated fatty acids have profound effects on gene expression, leading to changes in metabolism, growth and cell differentiation, and these effects are worth investigating in developing fish. The nature of the dietary protein fraction also affects the quality of fish larvae development. It appears that dietary incorporation of 20 amino acid peptides or di-and tripeptides leads to a reduction of spinal malformations in sea bass. Among vitamins, the teratogenic effect of retinoic acid is now well documented in vertebrates. High dietary retinoic acid levels result in higher incidence of bone deformities, such as vertebral curvature, central fusion and compression of vertebra in Japanese flounder larvae. The teratogenic effect of retinoic acid observed in embryonic and postembryonic stages was explained by a depression of shh expression. As for vitamin C, opercular abnormalities in milkfish larvae, associated with distortion of gill filament cartilages, were reduced by 50% when feeding larvae with ascorbic acid enriched rotifers and Artemia, compared to control fish.
The aim of the study was to determine the influence of dietary phospholipid concentration on survival and development in sea bass (Dicentrarchus labrax) larvae. Larvae were fed from day 9 to day 40 post-hatch with an isoproteic and isolipidic formulated diet with graded phospholipid levels from 27 to 116 g/kg DM and different phospholipid:neutral lipid values. The best growth (32 mg at the end of the experiment) survival (73 %) and larval quality (only 2 % of malformed larvae) were obtained in the larvae fed the diet containing 116 g phospholipid/kg DM (P, 0·05). These results were related to the amount of phosphatidylcholine and phosphatidylinositol included in this diet (35 and 16 g/kg respectively). Amylase, alkaline phosphatase and aminopeptidase N activities revealed a proper maturation of the digestive tract in the two groups fed the highest phospholipid levels. Regulation of lipase and phospholipase A2 by the relative amount of their substrate in the diet occurred mainly at the transcriptional level. The response of pancreatic lipase to dietary neutral lipid was not linear. As in mammals 200 g triacylglycerol/kg diet seems to represent a threshold level above which the response of pancreatic lipase is maximal. The response of phospholipase A2 to dietary phospholipid content was gradual and showed a great modulation range in expression. Sea bass larvae have more efficient capacity to utilize dietary phospholipid than neutral lipids. For the first time a compound diet sustaining good growth, survival and skeletal development has been formulated and can be used in total replacement of live prey in the feeding sequence of marine fish larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.