This paper analyzes an initial/boundary value problem for a system of equations modelling the nonstationary flow of a nonhomogeneous incompressible asymmetric (polar) fluid. Under conditions similar to those usually imposed to the nonhomogeneous 3D Navier-Stokes equations,
by using a spectral semi-Galerkin method, we prove the existence of a local in time strong solution. We also prove the uniqueness of the strong solution and some global existence results. Several estimates for the solutions and their approximations are given. These can be used to find useful error bounds of the Galerkin approximations.Dans ce papier, on analyse un problème de valeurs initiales et
valeurs aux limites pour un système d’équations aux dérivées
partielles qui modélise le flux instationnaire d’un fluide asymmétrique
incompressible non homogène. Sous des conditions similaires aux conditions usuellement imposées aux équations tridimensionelles de Navier-Stokes non homogènes, à l’aide d’une méthode de type semi-Galerkin, nous démontrons l’éxistence d’une solution forte locale en temps. On établit aussi l’unicité de solution forte et quelques résultats d’éxistence globale. Tous ces résultats reposent sur des estimations appropriées pour les solutions et leurs approximations qui permettent d’ailleurs d´eduire des estimations de l’erreur.Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil)Fundação de Amparo à Pesquisa do Estado de São PauloDirección General de Enseñanza Superio
By using tIte Galerkin metItod, we prove tIte existence of weak selutions for the equations of tIte magneto-micropelar fluid metien in tWe atod three dimensions in space. lix tIte two-dimensional case, we alse prove tItat such weak solution is unique. We also prove the reproductive property.
We study the existence, regularity, and conditions for uniqueness of solutions of a generalized Boussinesq model for thermally driven convection. The model allows temperature dependent viscosity and thermal conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.