The aim of this study was to determine whether neuromuscular electrical stimulation (NMES) affects skeletal muscle regeneration through a reduction of oxidative status in satellite cells of healthy elderly subjects. Satellite cells from the vastus lateralis skeletal muscle of 12 healthy elderly subjects before and after 8 wk of NMES were allowed to proliferate to provide myogenic populations of adult stem cells [myogenic precursor cells (MPCs)]. These MPCs were then investigated in terms of their proliferation, their basal cytoplasmic free Ca concentrations, and their expression of myogenic regulatory factors (, and ) and micro-RNAs (miR-1, miR-133a/b, and miR-206). The oxidative status of these MPCs was evaluated through superoxide anion production and superoxide dismutase and glutathione peroxidase activities. On dissected single skeletal myofibers, the nuclei were counted to determine the myonuclear density, the fiber phenotype, cross-sectional area, and tension developed. The MPCs obtained after NMES showed increased proliferation rates along with increased cytoplasmic free Ca concentrations and gene expression of and on MPCs. Muscle-specific miR-1, miR-133a/b, and miR-206 were upregulated. This NMES significantly reduced superoxide anion production, along with a trend to reduction of superoxide dismutase activity. The NMES-dependent stimulation of muscle regeneration enhanced satellite cell fusion with mature skeletal fibers. NMES improved the regenerative capacity of skeletal muscle in elderly subjects. Accordingly, the skeletal muscle strength and mobility of NMES-stimulated elderly subjects significantly improved. NMES may thus be further considered for clinical or ageing populations. The neuromuscular electrical stimulation (NMES) effect on skeletal muscle regeneration was assessed in healthy elderly subjects for the first time. NMES improved the regenerative capacity of skeletal muscle through increased myogenic precursor cell proliferation and fusion with mature myofibers. The increased cytoplasmic free Ca concentration along with ,, and micro-RNA upregulation could be related to reduced O production, which, in turn, favors myogenic regeneration. Accordingly, the skeletal muscle strength of NMES-stimulated lower limbs of healthy elderly subjects improved along with their mobility.
The mechanisms underpinning fatigue and exhaustion, and the specific sources of exercise-endurance intensity regulation and (in)tolerance have been investigated for over a century. Although several scientific theories are currently available, over the past five years a new framework called Psychobiological model has been proposed. This model gives greater attention to perceptual and motivational factors than its antecedents, and their respective influence on the conscious process of decision-making and behavioral regulation. In this review we present experimental evidences and summarize the key points of the Psychobiological model to explain intensity regulation and (in)tolerance in endurance exercise. Still, we discuss how the Psychobiological model explains training-induced adaptations related to improvements in performance, experimental manipulations, its predictions, and propose future directions for this investigative area. The Psychobiological model may give a new perspective to the results already published in the literature, helping scientists to better guide their research problems, as well as to analyze and interpret new findings more accurately.
The aims of this study were to verify the relationship between rating of perceived exertion (RPE) and electromyography (EMG) increases during exhaustive constant-load cycling bouts and, to compare and to correlate the power outputs corresponding to perceived exertion threshold (PET) and neuromuscular fatigue threshold (NFT). 11 men completed 3-4 different exhaustive constant-load cycling bouts on a cycle ergometer, being RPE and EMG measured throughout the bouts. The linear regression of the RPEslope and EMGslope against the power output identified the PET and NFT intensity, respectively. There was a significant relationship between RPEslope and EMGslope (R(2)=0.69; P<0.01). However, the linearity of RPEslope (R(2)=0.93±0.07) was significantly higher (P<0.001) than EMGslope (R(2)=0.63±0.25). In addition, the RPEslope and EMGslope were related to time to exhaustion (r=-0.59 and r=-0.60; P<0.001). There was no significant difference (P=0.42) between PET (201.5±27.9W) and NFT (210.3±22.6W) and they were significantly correlated (r=0.78; P=0.005). Therefore, the RPE and EMG increases during exhaustive constant-load cycling bouts are related and, PET and NFT intensities are similar and closely associated.
Frequency domain analyses of changes in electromyographic (EMG) signals over time are frequently used to assess muscle fatigue. Fourier based approaches are typically used in these analyses, yet Fourier analysis assumes signal stationarity, which is unlikely during dynamic contractions. Wavelet based methods of signal analysis do not assume stationarity and may be more appropriate for joint time-frequency domain analysis. The purpose of this study was to compare Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) in assessing muscle fatigue in isometric and dynamic exercise. The results of this study indicate that CWT and STFT analyses give similar fatigue estimates (slope of median frequency) in isometric and dynamic exercise (P>0.05). However, the results of the variance was lower for both types of exercise in CWT compared to STFT (P < 0.05) indicating more variability in the EMG signal analysis using STFT. Thus, the stationarity assumption may not be the sole factor responsible for affecting the Fourier based estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.