Lipids are the predominant source of energy for fish. The mechanisms by which fish allocate energy from lipids, for metabolism, development, growth and reproduction are critical for understanding key life history strategies and transitions. Currently, the major lipid component in aquaculture diets is fish oil (FO), derived from wild capture fisheries that are exploited at their maximum sustainable limit. The increasing demand from aquaculture for FO will soon exceed supply and threaten the viability of aquaculture. Thus, it is essential to minimize FO use in aquaculture diets. This might be achieved by a greater understanding of lipid storage and muscle growth, or the identification of alternatives to FO in feeds. This review focuses on recent research applying molecular and genomic techniques to the study of fin-fish lipid metabolism from an aquaculture perspective. Accordingly, particular emphasis will be given to fatty acid metabolism and to highly unsaturated fatty acid (HUFA) biosynthesis, and to the transcriptional mechanisms and endocrine factors that regulate these processes in fish. Comparative studies of gene function and distribution are described which, when integrated with recent fish genome sequence information, provide insights into lipid homeostasis and the outcomes associated with the replacement of FO in fish diets.
The cloning and characterization of cDNAs and genes encoding three peroxisome proliferator-activated receptor (PPAR) isotypes from two species of marine fish, the plaice (Pleuronectes platessa) and the gilthead sea bream (Sparus aurata), are reported for the first time. Although differences in the genomic organization of the fish PPAR genes compared with their mammalian counterparts are evident, sequence alignments and phylogenetic comparisons show the fish genes to be homologs of mammalian PPARalpha, PPARbeta/delta, and PPARgamma. Like their mammalian homologs, fish PPARs bind to a variety of natural PPAR response elements (PPREs) present in the promoters of mammalian or piscine genes. In contrast, the mRNA expression pattern of PPARs in the two fish species differs from that observed in other vertebrates. Thus, PPARgamma is expressed more widely in fish tissues than in mammals, whereas PPARalpha and beta are expressed similarly in profile to mammals. Furthermore, nutritional status strongly influences the expression of all three PPAR isotypes in liver, whereas it has no effect on PPAR expression in intestinal and adipose tissues. Fish PPARalpha and beta exhibit an activation profile similar to that of the mammalian PPAR in response to a variety of activators/ligands, whereas PPARgamma is not activated by mammalian PPARgamma-specific ligands. Amino acid residues shown to be critical for ligand binding in mammalian PPARs are not conserved in fish PPARgamma and therefore, together with the distinct tissue expression profile of this receptor, suggest potential differences in the function of PPARgamma in fish compared with mammals.
This protocol describes a method for preparing cultures of Plasmodium falciparum synchronized at any intraerythrocytic stage. Using this method, around 60% parasitized cells may be obtained. On the basis of Trager and Jensen's original continuous culture method, our approach relies on the use of fresh human blood not older than 2 weeks, a low hematocrit between 0.8 and 1.5%, a starting frozen inoculum of 10% ring-stage parasitemia, human serum replaced with AlbuMAX I and alternating sorbitol and Percoll synchronization methods to shorten the cycle window to 4-6 h and reduce sorbitol toxicity. From our synchronized high parasite density cultures, 3-5 ml of infected red blood cells can be obtained in 1 week, corresponding to 1.2 mg of total parasite protein per ml of harvested culture. On the basis of the variables parasitemia and packed cell volume, we provide an equation to accurately calculate the amount of complete medium required every 24 h corrected for the cycle stage and capacity of the culture flask. Ten days suffice to complete the protocol from a frozen stock of parasites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.