Hydrogenation of polybutadienes with from 8 to nearly 100% vinyl content was used to prepare a series of model copolymers of ethylene and butene‐1 with uniform microstructures and narrow molecular weight distributions. They range from readily crystallizable to completely amorphous, depending on the frequency of ethyl side branches (2–50 per 100 skeletal carbons). Melting temperature, secondary transition temperature, density, plateau modulus for the melt, and elastic modulus for the solid were obtained as functions of branch content. The effect of crystallinity on the secondary transition and modulus of the solid is discussed.
The diffusion of a liquid polymer into a glassy polymer matrix has been studied in a range of temperatures below the glassy matrix glass transition temperature (T g) and for different diffusion times. The liquid polymer used is low-molecular-weight polystyrene (PS) with a narrow molecular weight distribution, and the glassy matrix is poly(phenylene oxide); the two are miscible at any concentration. A simple physical diffusion model is proposed to correlate and predict diffusion rates, assuming a relatively rapid dissolution of the high-Tg polymer at the liquid-solid interface and a relatively slow diffusion process that produces a thick interphase. The local chemical compositions, local glass transition temperatures, and local PS monomeric friction coefficients change markedly along the diffusion path across the interphase; these changes are well predicted by the diffusion model and have also been experimentally verified. The large changes in local T g values cause huge changes in the PS monomeric friction factor across the interphase, and this fact explains the asymmetrical local chemical composition profiles experimentally measured for the PS-rich interphase. The results obtained by other authors for the diffusion of liquid polymers and bulky plasticizers into glassy matrixes are analyzed and discussed on the basis of the diffusion model predictions, and it is found that all of them behave following the same pattern as was observed in our experiments. It is concluded that the Case II diffusion mechanism must not be expected for the diffusion of liquid polymers into glassy matrixes, because of the negligible osmotic pressure. Furthermore, all of the analyzed data for diffusion of liquid polymers and bulky plasticizers into glassy matrixes show evidence for relatively rapid dissolution of the glassy matrix at the interface, together with a relatively slow diffusion process across the interphase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.