Multi-versioned database systems have the potential to significantly increase the amount of concurrency in transaction processing because they can avoid read-write conflicts. Unfortunately, the increase in concurrency usually comes at the cost of transaction serializability. If a database user requests full serializability, modern multi-versioned systems significantly constrain read-write concurrency among conflicting transactions and employ expensive synchronization patterns in their design. In main-memory multi-core settings, these additional constraints are so burdensome that multiversioned systems are often significantly outperformed by singleversion systems.We propose BOHM, a new concurrency control protocol for mainmemory multi-versioned database systems. BOHM guarantees serializable execution while ensuring that reads never block writes. In addition, BOHM does not require reads to perform any bookkeeping whatsoever, thereby avoiding the overhead of tracking reads via contended writes to shared memory. This leads to excellent scalability and performance in multi-core settings. BOHM has all the above characteristics without performing validation based concurrency control. Instead, it is pessimistic, and is therefore not prone to excessive aborts in the presence of contention. An experimental evaluation shows that BOHM performs well in both high contention and low contention settings, and is able to dramatically outperform state-of-the-art multi-versioned systems despite maintaining the full set of serializability guarantees.
No abstract
Lattice agreement is a key decision problem in distributed systems. In this problem, processes start with input values from a lattice, and must learn (non-trivial) values that form a chain. Unlike consensus, which is impossible in the presence of even a single process failure, lattice agreement has been shown to be decidable in the presence of failures. In this paper, we consider lattice agreement problems in asynchronous, message passing systems. We present an algorithm for the lattice agreement problem that guarantees liveness as long as a majority of the processes are non-faulty. The algorithm has a time complexity of O(N ) message delays, where N is the number of processes. We then introduce the generalized lattice agreement problem, where each process receives a (potentially unbounded) sequence of values from an infinite lattice and must learn a sequence of increasing values such that the union of all learnt sequences is a chain and every proposed value is eventually learnt. We present a wait-free algorithm for solving generalized lattice agreement. The algorithm guarantees that every value received by a correct process is learnt in O(N ) message delays. We show that this algorithm can be used to implement a class of replicated state machines where (a) commands can be classified as reads and updates, and (b) all update commands commute. This algorithm can be used to realize serializable and linearizable replicated versions of commonly used data types.
Serverless computing offers the potential to program the cloud in an autoscaling, pay-as-you go manner. In this paper we address critical gaps in first-generation serverless computing, which place its autoscaling potential at odds with dominant trends in modern computing: notably data-centric and distributed computing, but also open source and custom hardware. Put together, these gaps make current serverless offerings a bad fit for cloud innovation and particularly bad for data systems innovation. In addition to pinpointing some of the main shortfalls of current serverless architectures, we raise a set of challenges we believe must be met to unlock the radical potential that the cloud-with its exabytes of storage and millions of cores-should offer to innovative developers.
Although significant recent progress has been made in improving the multi-core scalability of high throughput transactional database systems, modern systems still fail to achieve scalable throughput for workloads involving frequent access to highly contended data. Most of this inability to achieve high throughput is explained by the fundamental constraints involved in guaranteeing ACID -the addition of cores results in more concurrent transactions accessing the same contended data for which access must be serialized in order to guarantee isolation. Thus, linear scalability for contended workloads is impossible. However, there exist flaws in many modern architectures that exacerbate their poor scalability, and result in throughput that is much worse than fundamentally required by the workload.In this paper we identify two prevalent design principles that limit the multi-core scalability of many (but not all) transactional database systems on contended workloads: the multi-purpose nature of execution threads in these systems, and the lack of advanced planning of data access. We demonstrate the deleterious results of these design principles by implementing a prototype system, OR-THRUS, that is motivated by the principles of separation of database component functionality and advanced planning of transactions. We find that these two principles alone result in significantly improved scalability on high-contention workloads, and an order of magnitude increase in throughput for a non-trivial subset of these contended workloads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.