Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.
We have studied the biochemical features, the conformational preferences in solution, and the DNA binding properties of human p8 (hp8), a nucleoprotein whose expression is affected during acute pancreatitis. Biochemical studies show that hp8 has properties of the high mobility group proteins, HMG-I/Y. Structural studies have been carried out by using circular dichroism (near-and far-ultraviolet), Fourier transform infrared, and NMR spectroscopies. All the biophysical probes indicate that hp8 is monomeric (up to 1 mM concentration) and partially unfolded in solution. The protein seems to bind DNA weakly, as shown by electrophoretic gel shift studies. On the other hand, hp8 is a substrate for protein kinase A (PKA). The phosphorylated hp8 (PKAhp8) has a higher content of secondary structure than the nonphosphorylated protein, as concluded by Fourier transform infrared studies. PKAhp8 binds DNA strongly, as shown by the changes in circular dichroism spectra, and gel shift analysis. Thus, although there is not a high sequence homology with HMG
Different patterns of channel activity have been detected by patch clamping excised membrane patches from reconstituted giant liposomes containing purified KcsA, a potassium channel from prokaryotes. The more frequent pattern has a characteristic low channel opening probability and exhibits many other features reported for KcsA reconstituted into planar lipid bilayers, including a moderate voltage dependence, blockade by Na ؉ , and a strict dependence on acidic pH for channel opening. The predominant gating event in this low channel opening probability pattern corresponds to the positive coupling of two KcsA channels. However, other activity patterns have been detected as well, which are characterized by a high channel opening probability (HOP patterns), positive coupling of mostly five concerted channels, and profound changes in other KcsA features, including a different voltage dependence, channel opening at neutral pH, and lack of Na During the last decades, the use of high resolution electrophysiological techniques to study ion channels has provided a large amount of information on functional aspects of these important membrane proteins. Such a detailed information on channel function, however, has not been accompanied by structural knowledge until recently, when several structurally simpler homologues of mammalian ion channels found in extremophyle bacteria or Archaea and remarkably resistant to harsh experimental conditions, have been purified, crystallized and their structure solved at high resolution by x-ray diffraction methods (1-4). A K ϩ channel from the soil bacteria Streptomyces lividans named KcsA 4 (1), a homotetramer made up of identical 160-amino acid subunits, was the first of such structures to be solved (5, 6), and, although the x-ray structure corresponds to a closed channel conformation, it has contributed much to our current understanding of ion selectivity and permeation. Ironically, there was little or no functional information on KcsA by the time its structure was solved, and then several groups undertook the task of characterizing its single channel properties, which has been surrounded by controversy. For instance, Schrempf's group, discoverers of KcsA in S. lividans, reported a strong dependence of channel opening on acidic pH, multiple conductance states with opening probabilities near 0.5, and unusual permeabilities to Na ϩ , Li ϩ , Ca 2ϩ , or Mg 2ϩ , along with K ϩ (7-9). In contrast, Miller's group (10, 11) using purified KcsA reconstituted into planar lipid bilayers found a single conductance state with a much lower opening probability, as well as orthodox ion selectivity and other properties to validate KcsA as a bona fide K ϩ channel and as a faithful structural model for these molecules. The above discrepancies were never fully explained but, still, it became generally accepted that KcsA behaves as a moderately voltage-dependent, K ϩ -selective channel with a characteristic low opening probability and the peculiar property of opening only in response to very acidic pH condit...
KcsA is a prokaryotic potassium channel formed by the assembly of four identical subunits around a central aqueous pore. Although the high-resolution X-ray structure of the transmembrane portion of KcsA is known [Doyle, D. A., Morais, C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.