In this work, flux decline during crossflow ultrafiltration of macromolecules with ceramic membranes has been modeled using artificial neural networks. The artificial neural network tested was the multilayer perceptron. Operating parameters (transmembrane pressure, crossflow velocity and time) and dynamic fouling were used as inputs to predict the permeate flux. Several pretreatments of the experimental data and the optimal selection of the parameters of the neural networks were studied to improve the fitting accuracy. The fitting accuracy obtained with artificial neural networks was compared with Hermia pore blocking models adapted to crossflow ultrafiltration. The artificial neural networks generate simulations whose performance was comparable to that of Hermia's models adapted to crossflow ultrafiltration. Considering the computational speed, high accuracy and the ease of the artificial neural networks methodology, they are a competitive, powerful and fast alternative for dynamic crossflow ultrafiltration modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.