Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs)1,2. However even the best bNAbs neutralize 10–50% of HIV-1 isolates inefficiently (IC80 > 5 μg/ml), suggesting that high concentrations of these antibodies would be necessary to achieve general protection3–6. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean IC50 < 0.05 μg/ml). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2, and SIV isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46, and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17 to 77 μg/ml of fully functional rhesus eCD4-Ig for 40 weeks, and these macaques were protected from multiple infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.
Adenosine deaminase (ADA), a protein whose deficit leads to severe combined immunodeficiency, binds to the cell surface by means of either CD26, A 1 adenosine receptors, or A2B adenosine receptors. The physiological role of these interactions is not well understood. Our results show that by a 3-fold reduction in the EC 50 for the antigen, ADA potentiated T cell proliferation in autologous cocultures with antigen-pulsed immature or mature dendritic cells. Costimulation was not due to the enzymatic activity but to the interaction of ADA-CD26 complexes in T cells with an ADAanchoring protein in dendritic cells. From colocalization studies, it is deduced that ADA colocalizing with adenosine receptors on dendritic cells interact with CD26 expressed on lymphocytes. This costimulatory signal in the immunological synapse leads to a marked increase (3-to 34-fold) in the production of the T helper 1 and proimmflamatory cytokines IFN-␥, TNF-␣, and IL-6. adenosine deaminase ͉ costimulation ͉ immunosynapse A denosine deaminase (ADA; EC 3.5.4.4) an enzyme involved in purine metabolism, catalyzes the hydrolytic deamination of adenosine or 2Ј-deoxyadenosine to inosine or 2Ј-deoxyinosine and ammonia. Congenital defect of ADA causes severe combined immunodeficiency, which is characterized by the absence of functional T and B lymphocytes in affected individuals (1). For many years, ADA was considered to be cytosolic, but it has been found on the cell surface of many cell types; therefore, it can be considered an ectoenzyme. In addition, ecto-ADA has been proposed to have a catalytic-independent function as a costimulatory molecule in lymphocytes (2).So far, two types of surface anchoring proteins for ecto-ADA have been described. The first type, with only one member, is CD26, a multifunctional protein of 110 KDa strongly expressed on epithelial cells (kidney proximal tubules, intestine, and bile duct) and on several types of endothelial cells and fibroblasts and on leukocyte subsets (3-5). The second type of ecto-ADA-binding proteins includes the adenosine receptors (AR) A 1 (A 1 R) (6) and A 2B (A 2B R) (7). The association between ADA and CD26 on the T cell surface has been proposed to have a costimulatory function during T cell antigen receptor-CD3 complex engagement (2). Because CD26 has a short cytoplasmatic tail, it needs partners to transduce the signal. Ishii et al. (8) have described that CD26-mediated signaling occurs through its association with CD45RO. At present, it is not known whether ADA generates a signal when it binds to AR. However, we have previously demonstrated that ADA binding to A 1 R or A 2B R is required for high efficiency affinity binding of the agonist and for efficient agonist-dependent signaling (6, 7).Dendritic cells (DC) are the most potent antigen-presenting cells (APC) specialized in the initiation of immune responses by directing the activation and differentiation of naïve T lymphocytes (9, 10). Immature DC (iDC) reside in most tissues to uptake antigen; they are engaged when exposed to danger ...
Long-term delivery of potent broadly-neutralizing antibodies is a promising approach for the prevention of HIV-1 infection. We used AAV vector intramuscularly to deliver anti-SIV monoclonal antibodies (mAbs) in IgG1 form to rhesus monkeys. Persisting levels of delivered mAb as high as 270 μg/ml were achieved. However, host antibody responses to the delivered antibody were observed in 9 of the 12 monkeys and these appeared to limit the concentration of delivered antibody that could be achieved. This is reflected in the wide range of delivered mAb concentrations that were achieved: 1–270 μg/ml. Following repeated, marginal dose, intravenous challenge with the difficult-to-neutralize SIVmac239, the six monkeys in the AAV-5L7 IgG1 mAb group showed clear protective effects despite the absence of detectable neutralizing activity against the challenge virus. The protective effects included: lowering of viral load at peak height; lowering of viral load at set point; delay in the time to peak viral load from the time of the infectious virus exposure. All of these effects were statistically significant. In addition, the monkey with the highest level of delivered 5L7 mAb completely resisted six successive SIVmac239 i.v. challenges, including a final challenge with a dose of 10 i.v. infectious units. Our results demonstrate the continued promise of this approach for the prevention of HIV-1 infection in people. However, the problem of anti-antibody responses will need to be understood and overcome for the promise of this approach to be effectively realized.
Adaptive immune responses begin after productive immunosynaptic contacts formation established in secondary lymphoid organs by dendritic cells (DC) presenting the Ag to T lymphocytes. Despite its resemblance to the neurosynapse, the participation of soluble small nonpeptidic mediators in the intercellular cross-talk taking place during T cell–DC interactions remains poorly studied. In this study, we show that human DC undergoing maturation and in contact with T cells release significant amounts of glutamate, which is the main excitatory neurotransmitter in mammalians. The release of glutamate is nonvesicular and mediated by the DC-expressed Xc− cystine/glutamate antiporter. DC-derived glutamate stimulating the constitutively expressed metabotropic glutamate receptor 5 impairs T cell activation. However, after productive Ag presentation, metabotropic glutamate receptor 1 is expressed in T cells to mediate enhanced T cell proliferation and secretion of Th1 and proinflammatory cytokines. These data suggest that, during T cell–DC interaction, glutamate is a novel and highly effective regulator in the initiation of T cell-mediated immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.