Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens.
Multidrug-resistant (MDR) enterococci are important nosocomial pathogens and a growing clinical challenge. These organisms have developed resistance to virtually all antimicrobials currently used in clinical practice using a diverse number of genetic strategies. Due to this ability to recruit antibiotic resistance determinants, MDR enterococci display a wide repertoire of antibiotic resistance mechanisms including modification of drug targets, inactivation of therapeutic agents, overexpression of efflux pumps and a sophisticated cell envelope adaptive response that promotes survival in the human host and the nosocomial environment. MDR enterococci are well adapted to survive in the gastrointestinal tract and can become the dominant flora under antibiotic pressure, predisposing the severely ill and immunocompromised patient to invasive infections. A thorough understanding of the mechanisms underlying antibiotic resistance in enterococci is the first step for devising strategies to control the spread of these organisms and potentially establish novel therapeutic approaches.
In the context of the coronavirus disease 2019 (COVID-19) pandemic, the development and validation of rapid and easy-to-perform diagnostic methods are of high priority. This study was performed to evaluate a novel rapid antigen detection test (RDT) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory samples. Methods: The fluorescence immunochromatographic SARS-CoV-2 antigen test (Bioeasy Biotechnology Co., Shenzhen, China) was evaluated using universal transport medium with nasopharyngeal (NP) and oropharyngeal (OP) swabs from suspected COVID-19 cases. Diagnostic accuracy was determined in comparison to SARS-CoV-2 real-time (RT)-PCR. Results: A total of 127 samples were included; 82 were RT-PCR-positive. The median patient age was 38 years, 53.5% were male, and 93.7% were from the first week after symptom onset. Overall sensitivity and specificity were 93.9% (95% confidence interval 86.5-97.4%) and 100% (95% confidence interval 92.1-100%), respectively, with a diagnostic accuracy of 96.1% and Kappa coefficient of 0.9. Sensitivity was significantly higher in samples with high viral loads. Conclusions: The RDT evaluated in this study showed a high sensitivity and specificity in samples mainly obtained during the first week of symptoms and with high viral loads, despite the use of a non-validated sample material. The assay has the potential to become an important tool for early diagnosis of SARS-CoV-2, particularly in situations with limited access to molecular methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.