Overexpression of breast cancer resistance protein ABCG2 confers multidrug resistance in cancer cells. The GF120918-sensitive drug efflux activity of human wild-type (R482) ABCG2-transfected cells was used for rational screening of inhibitory flavonoids and establishment of structure-activity relationships. Flavones were found more efficient than flavonols, isoflavones, and flavanones. Differentially substituted flavone derivatives indicated positive OH effects at position 5, in contrast to positions 3 and 7. A methoxy at position 7 was slightly positive in tectochrysin, whereas a strong positive effect was produced by prenylation at position 6. The potency of 6-prenylchrysin was comparable with that of GF120918 (IC 50 = 0.3 Mmol/L). Both 6-prenylchrysin and tectochrysin seemed specific for ABCG2 because no interaction was detected with either P-glycoprotein or MRP1. The ABCG2 resistance profile in vitro is altered by mutation at amino acid 482. The R482T mutation limited the effect of prenylation on ABCG2 inhibition. Whereas GF120918 strongly inhibited the ATPase activity of wild-type ABCG2, neither 6-prenylchrysin nor tectochrysin altered the activity. In contrast, all three inhibitors stimulated the ATPase activity of mutant ABCG2. 6-Prenylchrysin at 0.5 Mmol/L efficiently sensitized the growth of wild-type ABCG2-transfected cells to mitoxantrone, whereas higher concentrations were required for the mutant ones. In contrast, 1 Mmol/L tectochrysin was sufficient to fully sensitize mutant ABCG2-transfected cells, whereas higher concentrations were required for the wild-type ones. Both flavones exhibited a lower intrinsic cytotoxicity than GF120918 and were apparently not transported by ABCG2. 6-Prenylchrysin and tectochrysin therefore constitute new and promising inhibitors for the reversal of ABCG2-mediated drug transport. (Cancer Res 2005; 65(11): 4852-60)
Cancer cell resistance to chemotherapy is often mediated by overexpression of P-glycoprotein, a plasma membrane ABC (ATP-binding cassette) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. P-glycoprotein (ABCB1, according to the human gene nomenclature committee) consists of two homologous halves each containing a transmembrane domain (TMD) involved in drug binding and efflux, and a cytosolic nucleotide-binding domain (NBD) involved in ATP binding and hydrolysis, with an overall (TMD-NBD)2 domain topology. Homologous ABC multidrug transporters, from the same ABCB family, are found in many species such as Plasmodiumfalciparum and Leishmania spp. protozoa, where they induce resistance to antiparasitic drugs. In yeasts, some ABC transporters involved in resistance to fungicides, such as Saccharomyces cerevisiae Pdr5p and Snq2p, display a different (NBD-TMD)2 domain topology and are classified in another family, ABCG. Much effort has been spent to modulate multidrug resistance in the different species by using specific inhibitors, but generally with little success due to additional cellular targets and/or extrusion of the potential inhibitors. This review shows that due to similarities in function and maybe in three-dimensional organization of the different transporters, common potential modulators have been found. An in vitro 'rational screening' was performed among the large flavonoid family using a four-step procedure: (i) direct binding to purified recombinant cytosolic NBD and/or full-length transporter, (ii) inhibition of ATP hydrolysis and energy-dependent drug interaction with transporter-enriched membranes, (iii) inhibition of cell transporter activity monitored by flow cytometry and (iv) chemosensitization of cell growth. The results indicate that prenylated flavonoids bind with high affinity, and strongly inhibit drug interaction and nucleotide hydrolysis. As such, they constitute promising potential modulators of multidrug resistance.
Parasite resistance to drugs has emerged as a major problem in current medicine, and therefore, there is great clinical interest in developing compounds that overcome these resistances. In an intensive study of South American medicinal plants, herein we report the isolation, structure elucidation, and biological activity of dihydro-beta-agarofuran sesquiterpenes from the roots of Maytenus magellanica (1-14) and M. chubutensis (14-17). This type of natural products may be considered as privileged structures. The structures of 10 new compounds, 1, 3, 6-9, and12-15, were determined by means of (1)H and (13)C NMR spectroscopic studies, including homonuclear (COSY and ROESY) and heteronuclear correlation experiments (HMQC and HMBC). The absolute configurations of eight hetero- and homochromophoric compounds, 1, 3,6-9, 12, and 13, were determined by means of CD studies. Fourteen compounds, 1-3 and 6-16, have been tested on a multidrug-resistant Leishmania tropica line overexpressing a P-glycoprotein-like transporter to determine their ability to revert the resistance phenotype and to modulate intracellular drug accumulation. From this series, 1, 2, 3, 14, and 15 showed potent activity, 1 being the most active compound. The structure-activity relationships of the different compounds are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.