A new analytical methodology for the determination of fully methoxylated flavones (FMFs) in citrus juices is described. Isolation of the FMFs is carried out by percolation of 30 mL of clarified citrus juice (to which tetramethyl-o-kaempferol is previously added as internal standard) through a C18 Sep-Pak cartridge, washing with 3 mL of water followed by 5 mL of water/acetonitrile (3:1), and selective elution of the retained FMFs with 5 mL of water/acetonitrile (9:11). Determination of the isolated FMFs is carried out by reversed-phase high-performance liquid chromatography (HPLC) and UV diode array detection (DAD). Signals at wavelengths 320, 335, and 345 nm (bandwidth 4 nm) are simultaneously acquired, stored, plotted, and integrated. The column used is a microbore (200 x 2.1-mm) Hypersil ODS 5 microns. Elution is in gradient mode, using a ternary mobile phase (water/acetonitrile/tetrahydrofuran). Column temperature is 40 degrees C. Recovery yields are nearly 100% for all the FMFs detected and identified: isosinensetin, hexamethyl-o-gossypetin, sinensetin, tetramethyl-o-isoscutellarein, hexamethyl-o-quercetagetin, nobiletin, tetramethyl-o-scutellarein, heptamethoxyflavone, and tangeretin. Chromatographic separation of the FMFs is extremely dependent upon the minor changes of the mobile phase composition and percentages, gradient rate, and temperature. The UV spectra (230 to 400 nm) of the FMFs obtained under chromatographic conditions are given. The FMFs relative response factors at 320, 335, and 345 nm and their concentrations in hand-squeezed and commercial concentrated orange and mandarin juices are tabulated. The FMF concentration differences found among samples are discussed.
A genetic transformation system for an industrial wine yeast strain is presented here. The system is based on the acquisition of cycloheximide resistance and is a direct adaptation of a previously published procedure for brewing yeasts (L. Del Pozo, D. Abarca, M. G. Claros, and A. Jimenez, Curr. Genet. 19:353-358, 1991). Transformants arose at an optimal frequency of 0.5 transformant per ,ug of DNA, are stable in the absence of selective pressure, and produce wine in the same way as the untransformed industrial strain. By using this transformation protocol, a filamentous fungal v-(1,4)-endoglucanase gene has been expressed in an industrial wine yeast under the control of the yeast actin gene promoter. Endoglucanolytic wine yeast secretes the fungal enzyme to the must, producing a wine with an increased fruity aroma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.