DNA sequencing in the phage lambda JA13 isolated from a lambda EMBL3 Hansenula polymorpha genomic DNA library containing the nitrate reductase-(YNR1) and nitrite reductase-(YNI1) encoding genes revealed an open reading frame (YNT1) of 1524 nucleotides encoding a putative protein of 508 amino acids with great similarity to the nitrate transporters from Aspergillus nidulans and Chlamydomonas reinhardtii. Disruption of the chromosomal YNT1 copy resulted in incapacity to grow in nitrate and a significant reduction in rate of nitrate uptake. The disrupted strain is still sensitive to chlorate, and, in the presence of 0.1 mM nitrate, the expression of YNR1 and YNI1 and the activity of nitrate reductase and nitrite reductase are significantly reduced compared with the wild-type. Northern-blot analysis showed that YNT1 is expressed when the yeast is grown in nitrate and nitrite but not in ammonium solution.
The genes encoding the nitrate transporter (YNT1), nitrite reductase (YNI1) and nitrate reductase (YNR1) are clustered in the yeast Hansenula polymorpha. In addition, DNA sequencing of the region containing these genes demonstrated that a new open reading frame called YNA1 (yeast nitrate assimilation) was located between YNR1 and YNI1. The YNA1 gene encodes a protein of 529 residues belonging to the family of Zn(II)2Cys6 fungal transcriptional factors, and has the highest similarity to the transcriptional factors encoded by nirA, and to a smaller extent to nit-4, involved in the nitrate induction of the gene involved in the assimilation of this compound in filamentous fungi. Northern blot analysis showed the presence of the YNA1 transcript in cells incubated in nitrate, nitrate plus ammonium, ammonium, and nitrogen-free media, with a decrease in its levels in those cells incubated in ammonium. In nitrate the strain Deltayna1::URA3, with a disrupted YNA1 gene, neither grew nor expressed the genes YNT1, YNI1 and YNR1. In the gene cluster YNT1-YNI1-YNA1-YNR1, the four genes were transcribed independently in the YNT1-->YNR1 direction and the transcription start sites were determined by primer extension.
Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.
Nitrogen assimilation by plant symbiotic fungi plays a central role in the mutualistic interaction established by these organisms, as well as in nitrogen flux in a variety of soils. In the present study, we report on the functional properties, structural organization and distinctive mode of regulation of TbNrt2 (Tuber borchii NRT2 family transporter), the nitrate transporter of the mycorrhizal ascomycete T. borchii. As revealed by experiments conducted in a nitrate-uptake-defective mutant of the yeast Hansenula polymorpha, TbNrt2 is a high-affinity transporter (K m = 4.7 µM nitrate) that is bispecific for nitrate and nitrite. It is expressed in free-living mycelia and in mycorrhizae, where it preferentially accumulates in the plasma membrane of root-contacting hyphae. The TbNrt2 mRNA, which is transcribed from a single-copy gene clustered with the nitrate reductase gene in the T. borchii genome, was specifically up-regulated following transfer of mycelia to nitrate-(or nitrite)-containing medium. However, at variance with the strict nitrate-dependent induction commonly observed in other organisms, TbNrt2 was also up-regulated (at both the mRNA and the protein level) following transfer to a nitrogen-free medium. This unusual mode of regulation differs from that of the adjacent nitrate reductase gene, which was expressed at basal levels under nitrogen deprivation conditions and required nitrate for induction. The functional and expression properties, described in the present study, delineate TbNrt2 as a versatile transporter that may be especially suited to cope with the fluctuating (and often low) mineral nitrogen concentrations found in most natural, especially forest, soils.
The nitrite reductase-encoding gene (YNI1) from the yeast Hansenula polymorpha was isolated from a lambda EMBL3 H. polymorpha genomic DNA library, using as a probe a 481 bp DNA fragment from the gene of Aspergillus nidulans encoding nitrite reductase (niiA). An open reading frame of 3132 bp, encoding a putative protein of 1044 amino acids with high similarity with nitrite reductases from fungi, was located by DNA sequencing in the phages lambdaNB5 and lambdaJA13. Genes YNI1 and YNR1 (encoding nitrate reductase) are clustered, separated by 1700 bp. Northern blot analysis showed that expression of YNI1 and YNR1 is co-ordinately regulated; induced by nitrate and nitrite and repressed by sources of reduced nitrogen, even in the presence of nitrate. A mutant lacking nitrite reductase activity was obtained by deletion of the chromosomal copy of YNI1. The mutant does not grow in nitrate or in nitrite; it exhibits a similar level of transcription of YNR1 to the wild type, but the nitrate reductase enzymic activity is only about 50% of the wild type. In the presence of nitrate the delta ynil::URA3 mutant extrudes approx. 24 nmol of nitrite/h per mg of yeast (wet weight), about five times more than the wild type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.