Aims. We investigate the spectral and temporal behavior of the high mass X-ray binary Vela X-1 during a phase of high activity, with special focus on the observed giant flares and off states. Methods. INTEGRAL observed Vela X-1 in a long almost uninterrupted observation for two weeks in 2003 Nov/Dec. The data were analyzed with OSA 7.0 and FTOOLS 6.2. We derive the pulse period, light curves, spectra, hardness ratios, and hardness intensity diagrams, and study the eclipse. Results. In addition to an already high activity level, Vela X-1 exhibited several intense flares, the brightest ones reaching a maximum intensity of more than 5 Crab in the 20-40 keV band and several off states where the source was no longer detected by INTEGRAL. We determine the pulse period to be 283.5320 ± 0.0002 s, which is stable throughout the entire observation. Analyzing the eclipses provided an improvement in the ephemeris. Spectral analysis of the flares indicates that there appear to be two types of flares: relatively brief flares, which can be extremely intense and show spectral softening, in contrast to high intensity states, which are longer and show no softening. Conclusions. Both flares and off states are interpreted as being due to a strongly structured wind of the optical companion. When Vela X-1 encounters a cavity with strongly reduced density, the flux will drop triggering the onset of the propeller effect, which inhibits further accretion, giving rise to off states. The sudden decrease in the density of the material required to trigger the propeller effect in Vela X-1 is of the same order as predicted by theoretical papers about the densities in OB star winds. A similarly structured wind can produce giant flares when Vela X-1 encounters a dense blob in the wind.
Fe K line fluorescence is commonly observed in the X-ray spectra of many X-ray binaries (XRBs) and represents a fundamental tool to investigate the material surrounding the X-ray source. In this paper, we present a comprehensive survey of 41 XRBs (10 HMXBs and 31 LMXBs) with Chandra with specific emphasis on the Fe K region and the narrow Fe Kα line, at the highest resolution possible. We find that (1) the Fe Kα line is always centered at λ = 1.9387 ± 0.0016 Å, compatible with Fe i up to Fe x; we detect no shifts to higher ionization states nor any difference between high mass X-ray binaries (HMXBs) and low mass X-ray binaries (LMXBs). (2) The line is very narrow, with FWHM < 5 mÅ, normally not resolved by Chandra which means that the reprocessing material is not rotating at high speeds. (3) Fe Kα fluorescence is present in all the HMXBs in the survey. In contrast, such emissions are astonishingly rare (∼10%) among LMXBs where only a few out of a large number showed Fe K fluorescence. However, the line and edge properties of these few are very similar to their high mass cousins. (4) The lack of Fe line emission is always accompanied by the lack of any detectable K edge. ( 5) We obtain the empirical curve of growth of the equivalent width of the Fe Kα line versus the density column of the reprocessing material, i.e., EW Kα versus N H , and show that it is consistent with a reprocessing region spherically distributed around the compact object. (6) We show that fluorescence in XRBs follows the X-ray Baldwin effect as previously only found in the X-ray spectra of active galactic nuclei. We interpret this finding as evidence of decreasing neutral Fe abundance with increasing X-ray illumination and use it to explain some spectral states of Cyg X-1 as a possible cause of the lack of narrow Fe line emission in LMXBs. ( 7) Finally, we study anomalous morphologies such as Compton shoulders and asymmetric line profiles associated with the line fluorescence. Specifically, we present the first evidence of a Compton shoulder in the HMXB X1908+075. Also, the Fe Kα lines of 4U1700−37 and LMC X-4 present asymmetric wings, suggesting the presence of highly structured stellar winds in these systems.
Massive stars, at least ∼ 10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations. This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical Unified view of of inhomogeneous stellar winds in supergiant stars and HXMB 3 diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.