The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on ‘Black holes, Gravitational waves and Fundamental Physics’.
We study the Fock description of a quantum free field on the three-sphere with a mass that depends explicitly on time, also interpretable as an explicitly time dependent quadratic potential. We show that, under quite mild restrictions on the time dependence of the mass, the specific Fock representation of the canonical commutation relations which is naturally associated with a massless free field provides a unitary dynamics even when the time varying mass is present. Moreover, we demonstrate that this Fock representation is the only acceptable one, up to unitary equivalence, if the vacuum has to be SO(4)-invariant (i.e., invariant under the symmetries of the field equation) and the dynamics is required to be unitary. In particular, the analysis and uniqueness of the quantization can be applied to the treatment of cosmological perturbations around Friedmann-Robertson-Walker spacetimes with the spatial topology of the three-sphere, like e.g. for gravitational waves (tensor perturbations).In addition, we analyze the extension of our results to free fields with a time dependent mass defined on other compact spatial manifolds. We prove the uniqueness of the Fock representation in the case of a two-sphere as well, and discuss the case of a three-torus.
Modulo a homogeneous degree of freedom and a global constraint, the linearly polarised Gowdy T 3 cosmologies are equivalent to a free scalar field propagating in a fixed nonstationary background. Recently, a new field parameterisation was proposed for the metric of the Gowdy spacetimes such that the associated scalar field evolves in a flat background in 1+1 dimensions with the spatial topology of of S 1 -translations. These translations are precisely those generated by the global constraint that remains on the Gowdy model. It is also shown that the proof of uniqueness in the choice of complex structure can be applied to more general field dynamics than that corresponding to the Gowdy cosmologies.
We investigate the ambiguities in the Fock quantization of the scalar perturbations of a FriedmannLemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a threesphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.PACS numbers: 98.80. Qc, 04.62.+v, 98.80.Cq
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.