Abstract-In this paper, a general multilayer circular cavity with N slabs is analyzed analytically, obtaining characteristic equations for TE and TM modes to compute the complex resonant frequency efficiently using an algorithm based on Chebyshev's root finder. The accuracy of the solutions is compared with full-wave circuit method, and the computational speed to achieve the roots of the characteristic equations is also compared with Cauchy Integral Method, which is commonly used to obtain complex roots. Furthermore, the relationship between the amplitudes of the different regions is obtained, whereby the whole structure can be analyzed as a single one from now on.
This paper reports on the development of a compact, low-cost, impulse bi-static UWB radar sensor for its use as non-destructive methods for electrical property measurement in industrial application. This UWB Radar sensor consists of an ultrashort-monocycle-pulse transmitter of 330 ps, an oscilloscope as a UWB sampling receiver with a high wide band of 6 GHz, and two UWB antennas ranging from 0.4 to 6 GHz. A new model of SRD has been introduced to decrease the rise time of the impulse. Performance of this UWB radar sensor was verified through two kinds of applications: range detection and electrical property measurements. All measurements have been carried out in an anechoic chamber with a distance variation between 80 and 300 cm. The full radar system provides good agreement between the experimental and theoretical results, which demonstrate its application in many fields, especially for electrical Property Measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.