Port state control inspections implemented under the Paris Memorandum of Understanding (MoU) have become known as one of the best instruments for maritime administrations in European Union (EU) Member States to ensure that the ships docked in their ports comply with all maritime safety requirements. This paper focuses on the analysis of all inspections made between 2013 and 2018 in the top ten EU ports incorporated in the Paris MoU (17,880 inspections). The methodology consists of a multivariate statistical information system (STATIS) analysis using the inspected ship’s characteristics as explanatory variables. The variables used describe both the inspected ships (classification society, flag, age and gross tonnage) and the inspection (type of inspection and number of deficiencies), yielding a dataset with more than 600,000 elements in the data matrix. The most important results are that the classifications obtained match the performance lists published annually by the Paris MoU and the classification societies. Therefore, the approach is a potentially valid classification method and would then be useful to maritime authorities as an additional indicator of a ship’s risk profile to decide inspection priorities and as a tool to measure the evolution in the risk profile of the flag over time.
The first pandemic of the 21st Century was declared at the beginning of the year 2020 due to the spread of the COVID-19 virus. Its effects devastated the world economy and greatly affected maritime transport, one of the precursors of globalisation. This paper studies the effects of the pandemic on this type of transport, using data from 23,803 Paris Memorandum of Understanding Port State Control (PSC) inspections conducted in the top 10 major European ports. Comparisons have been made between Pre-COVID (2013–2019) and COVID (2020–2021) years, by way of multivariate methodologies: CO-X-STATIS, X-STATIS, and correspondence tables. The results were striking and indicate a clear change in the conduct of inspections during the COVID period, both quantitatively and qualitatively, showing a drastic reduction in the number of inspections and a change in type, with exhaustive inspections assuming a secondary role. Another notable result came from the use of the same methodology to study the different countries of registry and their evolution within PSC inspections during the Pre-COVID and COVID periods, where different behaviours were identified based on a ship’s flag. These results can help us to determine important supervisory objectives for each country’s maritime administration and their inspectors, to indicate weaknesses in the inspection routines caused by the pandemic, and to attempt corrections to improve maritime safety.
Port state control inspections implemented under the Paris Memorandum of Understanding (MoU) have become known as one of the best instruments for maritime administrations in European Union (EU) Member States to ensure that the ships docked in their ports comply with all maritime safety requirements. This paper focuses on the analysis of all inspections made between 2013 and 2018 in the top ten EU ports incorporated in the Paris MoU (17,880 inspections). The methodology consists of a multivariate statistical information system (STATIS) analysis using the inspected ship’s characteristics as explanatory variables. The variables used describe both the inspected ships (classification society, flag, age and gross tonnage) and the inspection (type of inspection and number of deficiencies), yielding a dataset with more than 600,000 elements in the data matrix. The most important results are that the classifications obtained match the performance lists published annually by the Paris MoU and the classification societies. Therefore, the approach is a potentially valid classification method and would then be useful to maritime authorities as an additional indicator of a ship’s risk profile to decide inspection priorities and as a tool to measure the evolution in the risk profile of flag over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.