The ventral veinless (vvl) and trachealess (trh) genes are determinants of the Drosophila trachea. Early in development both genes are independently activated in the tracheal primordia by signals that are ill defined. Mutants blocking JAK/STAT signaling at any level do not form a tracheal tree suggesting that STAT92E may be an upstream transcriptional activator of the early trachea determinants. To test this hypothesis we have searched for STAT92E responsive enhancers activating the expression of vvl and trh in the tracheal primordia. We show that STAT92E regulated enhancers can be rapidly and efficiently isolated by focusing the analysis on genomic regions with clusters of putative STAT binding sites where at least some of them are phylogenetically conserved. Detailed analysis of a vvl early tracheal enhancer shows that non-conserved sites collaborate with conserved sites for enhancer activation. We find that STAT92E regulated enhancers can be located as far 60 kb from the promoters. Our results indicate that vvl and trh are independently activated by STAT92E which is the most important transcription factor required for trachea specification.
Extradenticle (Exd) and Homothorax (Hth) function as positive transcriptional cofactors of Hox proteins, helping them to bind specifically their direct targets. The posterior Hox protein Abdominal-B (Abd-B) does not require Exd/Hth to bind DNA; and, during embryogenesis, Abd-B represses hth and exd transcription. Here we show that this repression is necessary for Abd-B function, as maintained Exd/Hth expression results in transformations similar to those observed in loss-of-function Abd-B mutants. We characterize the cis regulatory module directly regulated by Abd-B in the empty spiracles gene and show that the Exd/Hth complex interferes with Abd-B binding to this enhancer. Our results suggest that this novel Exd/Hth function does not require the complex to bind DNA and may be mediated by direct Exd/Hth binding to the Abd-B homeodomain. Thus, in some instances, the main positive cofactor complex for anterior Hox proteins can act as a negative factor for the posterior Hox protein Abd-B. This antagonistic interaction uncovers an alternative way in which MEIS and PBC cofactors can modulate Abd-B like posterior Hox genes during development.
Organogenesis is controlled by gene networks activated by upstream selector genes. During development the gene network is activated stepwise, with a sequential deployment of successive transcription factors and signalling molecules that modify the interaction of the elements of the network as the organ forms. Very little is known about the steps leading from the early specification of the cells that form the organ primordium to the moment when a robust gene network is in place. Here we study in detail how a Hox protein induces during early embryogenesis a simple organogenetic cascade that matures into a complex gene network through the activation of feedback and feed forward interaction loops. To address how the network organization changes during development and how the target genes integrate the genetic information it provides, we analyze in Drosophila the induction of posterior spiracle organogenesis by the Hox gene Abdominal-B (Abd-B). Initially, Abd-B activates in the spiracle primordium a cascade of transcription factors and signalling molecules including the JAK/STAT signalling pathway. We find that at later stages STAT activity feeds back directly into Abd-B, initiating the transformation of the Hox cascade into a gene-network. Focusing on crumbs, a spiracle downstream target gene of Abd-B, we analyze how a modular cis regulatory element integrates the dynamic network information set by Abd-B and the JAK/STAT signalling pathway during development. We describe how a Hox induced genetic cascade transforms into a robust gene network during organogenesis due to the repeated interaction of Abd-B and one of its targets, the JAK/STAT signalling cascade. Our results show that in this network STAT functions not just as a direct transcription factor, but also acts as a "counter-repressor", uncovering a novel mode for STAT directed transcriptional regulation.
SUMMARYIntercellular communication depends on the correct organization of the signal transduction complexes. In many signalling pathways, the mechanisms controlling the overall cell polarity also localize components of these pathways to different domains of the plasma membrane. In the Drosophila ectoderm, the JAK/STAT pathway components are highly polarized with apical localization of the receptor, the associated kinase and the STAT92E protein itself. The apical localization of STAT92E is independent of the receptor complex and is due to its direct association with the apical determining protein Bazooka (Baz). Here, we find that Baz-STAT92E interaction depends on the presence of the Drosophila Src kinases. In the absence of Src, STAT92E cannot bind to Baz in cells or in whole embryos, and this correlates with an impairment of JAK/STAT signalling function. We believe that the requirement of Src proteins for STAT92E apical localization is mediated through Baz, as we can co-precipitate Src with Baz but not with STAT92E. This is the first time that a functional link between cell polarity, the JAK/STAT signalling pathway and the Src kinases has been established in a whole organism.
BackgroundCell polarity, essential for cell physiology and tissue coherence, emerges as a consequence of asymmetric localization of protein complexes and directional trafficking of cellular components. Although molecules required in both processes are well known their relationship is still poorly understood.ResultsHere we show a molecular link between Nuclear Fallout (Nuf), an adaptor of Rab11-GTPase to the microtubule motor proteins during Recycling Endosome (RE) trafficking, and aPKC, a pivotal kinase in the regulation of cell polarity. We demonstrate that aPKC phosphorylates Nuf modifying its subcellular distribution. Accordingly, in aPKC mutants Nuf and Rab11 accumulate apically indicating altered RE delivery. We show that aPKC localization in the apico-lateral cortex is dynamic. When we block exocytosis, by means of exocyst-sec mutants, aPKC accumulates inside the cells. Moreover, apical aPKC concentration is reduced in nuf mutants, suggesting aPKC levels are maintained by recycling.ConclusionsWe demonstrate that active aPKC interacts with Nuf, phosphorylating it and, as a result, modifying its subcellular distribution. We propose a regulatory loop by which Nuf promotes aPKC apical recycling until sufficient levels of active aPKC are reached. Thus, we provide a novel link between cell polarity regulation and traffic control in epithelia.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-016-0253-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.