In an animal model of AMI relevant to the human disease, intracoronary administration of IGF-1/HGF is a practical and effective strategy to reduce pathological cardiac remodeling, induce myocardial regeneration, and improve ventricular function.
The aims of this study were to assess changes in muscle architecture, isometric and dynamic strength of the leg extensor muscles, resulting from dynamic resistance training, and the relationships between strength and muscle architecture variables. The participants (n = 30) were randomly assigned to one of two groups. The training group (n = 16; age 21.8 +/- 2.3 years, body mass 74.8 +/- 9.2 kg, height 1.75 +/- 0.08 m) performed dynamic resistance training for 13 weeks. The control group (n = 14; age 19.9 +/- 1.5 years, body mass 74.0 +/- 8.5 kg, height 1.76 +/- 0.05 m) did not perform any resistance training. Maximal dynamic and isometric strength were tested in both groups, before and after the training period. The members of the training group used the free-weight squat lift (90 degrees ) as their training exercise. The concentric phase of the squat was performed explosively. Skeletal muscle architecture of the vastus lateralis was visualized using ultrasonography. At the end of the study, significant increases in vastus lateralis muscle thickness (+6.9%, P < 0.001), fascicle length (+10.3%, P < 0.05), one-repetition maximum (+8.2%, P < 0.05), rate of force development (+23.8%, P < 0.05) and average force produced in the first 500 ms (+11.7%, P < 0.05) were seen only in the training group. Adaptations to the muscle architecture in the training group limited the loss of fibre force, and improved the capacity for developing higher velocities of contraction. The architectural changes in the training group were similar to those seen in studies where high-speed training was performed. In conclusion, dynamic resistance training with light loads leads to increases in muscle thickness and fascicle length, which might be related to a more efficient transmission of fibre force to the tendon.
The purpose of the study was to use two palpation methods (Bardens and Ortolani), a radiographic distraction view, three computed tomography (CT) measurements (dorsolateral subluxation score, the lateral center-edge angle, and acetabular ventroversion angle) and two magnetic resonance (MR) imaging hip studies (synovial fluid and acetabular depth indices) in the early monitoring of hip morphology and laxity in 7-9 week old puppies; and in a follow-up study to compare their accuracy in predicting later hip laxity and dysplasia. The MR imaging study was performed with the dog in dorsal recumbency and the CT study with the animal in a weight-bearing position. There was no association between clinical laxity with later hip laxity or dysplasia. The dorsolateral subluxation score and the lateral center-edge angle were characterized by a weak negative correlation with later radiographic passive hip laxity (-0.26 < r < -0.38, P < 0.05) but its association with hip dysplasia was not significant. There was an association between early radiographic passive hip laxity and synovial fluid index with later passive hip laxity (0.41 < r < 0.55, P < 0.05) and this was significantly different in dysplastic vs. nondysplastic hips (P < 0.05). There was no association between the remaining variables and later hip laxity or dysplasia. The overlapping ranges of early passive hip laxity and synovial fluid index for hip dysplasia grades and the moderate correlations with the later passive hip laxity make the results of these variables unreliable for use in predicting hip laxity and dysplasia susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.