Desiccation-tolerant plants are able to withstand dehydration and resume normal metabolic functions upon rehydration. These plants can be dehydrated until their cytoplasm enters a ‘glassy state’ in which molecular mobility is severely reduced. In desiccation-tolerant seeds, longevity can be enhanced by drying and lowering storage temperature. In these conditions, they still deteriorate slowly, but it is not known if deteriorative processes include enzyme activity. The storage stability of photosynthetic organisms is less studied, and no reports are available on the glassy state in photosynthetic tissues. Here, the desiccation-tolerant moss Syntrichia ruralis was dehydrated at either 75% or <5% relative humidity, resulting in slow (SD) or rapid desiccation (RD), respectively, and different residual water content of the desiccated tissues. The molecular mobility within dry mosses was assessed through dynamic mechanical thermal analysis, showing that at room temperature only rapidly desiccated samples entered the glassy state, whereas slowly desiccated samples were in a ‘rubbery’ state. Violaxanthin cycle activity, accumulation of plastoglobules, and reorganization of thylakoids were observed upon SD, but not upon RD. Violaxanthin cycle activity critically depends on the activity of violaxanthin de-epoxidase (VDE). Hence, it is proposed that enzymatic activity occurred in the rubbery state (after SD), and that in the glassy state (after RD) no VDE activity was possible. Furthermore, evidence is provided that zeaxanthin has some role in recovery apparently independent of its role in non-photochemical quenching of chlorophyll fluorescence.
Triple-shape memory polymers are developed by blending and crosslinking two semicrystalline polymers (poly(cyclooctene), PCO, and polyethylene, PE) towards creating two pronounced segregated crystalline domains within a covalently crosslinked network. The key thermo-mechanical properties of a series of a polyalkenamer and a polyolefin based polymer blends are characterised using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Furthermore, the versatile multi-shape memory functionality is demonstrated, and main shape memory response is evaluated by performing consecutive thermomechanical bending experiments based on a two-step programming process and subsequent progressive thermal recovery. The proposed approach, thanks to the excellent achieved shape memory properties, as well as the possibility of tailoring the thermo-mechanical response, is presented as a versatile method to increase the potential applications of these thermo-active materials by designing optimal compositions.
Poly(vinylidene fluoride) (PVDF) and MOF-808-based separators for lithium-ion batteries (LIBs) have been prepared and fully characterized in terms of morphological and thermal properties, electrolyte uptake, and retention, and surface hydrophilic characteristics. The effect of PVDF/MOF-808 separators on the electrochemical performance of LIBs has been evaluated. The PVDF/MOF-808 membranes exhibit a well-defined porous structure with a uniform distribution of interconnected macro-to mesopores. The inclusion of the Zr-based MOF nanoparticles increases the porosity and surface area of the separator, enhancing the electrolyte uptake and the ionic conductivity. Finally, the presence of MOF-808 fillers improves the liquid electrolyte retention, which prevents the capacity fading at high C-rates cycling. Indeed, charge−discharge tests performed in Li/C-LiFePO 4 half-cells reveal a discharge capacity of 68 mAh•.g −1 at 2C-rate for PVDF/MOF-808 membranes, in comparison with the 0 mAh•g −1 obtained for pure PVDF. The PVDF/10 wt % MOF-808 sample shows a long-term stable cycling behavior with a Coulombic efficiency close to 100%. Thus, it is shown that the composite membranes represent an improvement with respect to conventional separators for lithium ion battery applications, since they coupled the polymer meso-and macroporous structure with the wellordered microporous system of the MOFs, which improve significantly the electrolyte affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.