This paper presents an evaluation of land cover accuracy, particularly regarding oil palm crop cover, using optical/synthetic aperture radar (SAR) image fusion methods through the implementation of the random forest (RF) algorithm on cloud computing platforms using Sentinel-1 SAR and Sentinel-2 optical images. Among the fusion methods evaluated were Brovey (BR), high-frequency modulation (HFM), Gram–Schmidt (GS), and principal components (PC). This work was developed using a cloud computing environment employing R and Python for statistical analysis. It was found that an optical/SAR image stack resulted in the best overall accuracy with 82.14%, which was 11.66% higher than that of the SAR image, and 7.85% higher than that of the optical image. The high-frequency modulation (HFM) and Brovey (BR) image fusion methods showed overall accuracies higher than the Sentinel-2 optical image classification by 3.8% and 3.09%, respectively. This demonstrates the potential of integrating optical imagery with Sentinel SAR imagery to increase land cover classification accuracy. On the other hand, the SAR images obtained very high accuracy results in classifying oil palm crops and forests, reaching 94.29% and 90%, respectively. This demonstrates the ability of synthetic aperture radar (SAR) to provide more information when fused with an optical image to improve land cover classification.
<p>This paper evaluates different optical and synthetic aperture radar (SAR) image fusion methods applied to open-access Sentinel images with global coverage. The objective of this research was to evaluate the potential of image fusion methods to get a greater visual difference in land cover, especially in oil palm crops with natural forest areas that are difficult to differentiate visually. The application of the image fusion methods: Brovey (BR), high-frequency modulation (HFM), Gram-Schmidt (GS), and principal components (PC) was evaluated on Sentinel-2 optical and Sentinel-1 SAR images using a cloud computing environment. The results show that the application of the implemented optical/SAR image fusion methods allows the creation of a synthetic image with the characteristics of both data sources. The multispectral information provided by the optical image and information associated with the geometry and texture/roughness of the land covers, provided by the SAR image, allows a greater differentiation in the visualization of the various land covers, achieving a better understanding of the study area. The fusion methods that visually presented greater characteristics associated with the SAR image were the BR and GS methods. The HFM method reached the best statistical indicators; however, this method did not present significant visual changes in the SAR contribution.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.