A case study is presented that implements two numerical models for simulating a 30-year PAT operation conducted at a large contaminated site for which high-resolution data sets are available. A Markov chain based stochastic method is used to conditionally generate the realizations with random distribution of heterogeneity for the Tucson International Airport Area (TIAA) federal Superfund site. The fields were conditioned to data collected for 245 boreholes drilled at the site. Both MT3DMS and the advanced random walk particle method (RWhet) were used to simulate the PAT-based mass removal process. The results show that both MT3DMS and RWhet represent the measured data reasonably, with Root Mean Square Error (RMSE) less than 0.03. The use of fine grids and the total-variation-diminishing method (TVD) limited the effects of numerical dispersion for MT3DMS. However, the effects of numerical dispersion were observed when compared to the simulations produced with RWhet using a larger number of particles, which provided more accurate results with RMSE diminishing from 0.027 to 0.024 to 0.020 for simulations with 1, 20, and 50 particles. The computational time increased with more particles used in the model, but was still much less than the time required for MT3DMS, which is an advantage of RWhet. By showing the results using both methods, this study provides guidance for simulating long-term PAT systems. This work will lead to improve understanding of contaminant transport and plume persistence, and in turn will enhance site characterization and site management for contaminated sites with large plumes.
The efficiency of seepage meters, long considered a fixed property associated with the meter design, is not constant in highly permeable sediments. Instead, efficiency varies substantially with seepage bag fullness, duration of bag attachment, depth of meter insertion into the sediments, and seepage velocity. Tests conducted in a seepage test tank filled with isotropic sand with a hydraulic conductivity of about 60 m/d indicate that seepage meter efficiency varies widely and decreases unpredictably when the volume of the seepage bag is greater than about 65 to 70 percent full or less than about 15 to 20 percent full. Seepage generally decreases with duration of bag attachment even when operated in the mid-range of bag fullness. Stopping flow through the seepage meter during bag attachment or removal also results in a decrease in meter efficiency. Numerical modeling indicates efficiency is inversely related to hydraulic conductivity in highly permeable sediments. An efficiency close to 1 for a meter installed in sediment with a hydraulic conductivity of 1 m/d decreases to about 60 and then 10 percent when hydraulic conductivity is increased to 10 and 100 m/d, respectively. These large efficiency reductions apply only to high-permeability settings, such as wave- or tidally washed coarse sand or gravel, or fluvial settings with an actively mobile sand or gravel bed, where low resistance to flow through the porous media allows bypass flow around the seepage cylinder to readily occur. In more typical settings, much greater resistance to bypass flow suppresses small changes in meter resistance during inflation or deflation of seepage bags.
<p>Groundwater flowing through coastal aquifers is increasingly impacted by human pressures as consequence of a growing demand on drinking water, tourism and agriculture, among others. Thus, groundwater availability very often depend on its quality since water salinization and pollution are the main challenges for water management because of seawater and freshwater interaction. Therefore, it is crucial to monitor the availability of groundwater and its quality under changing scenarios where this water resource can be specially threatened.</p><p>This study aims to assess the spatial distribution and time evolution of groundwater levels and hydrochemistry of the alluvial aquifer of the Bajo Guadalhorce Valley (M&#225;laga, S Spain) for the evaluation of its quantitative and qualitative status. To that, groundwater level, electrical conductivity and Cl<sup>-</sup> and SO<sub>4</sub><sup>2-</sup> concentrations of water have been measured in a field sampling campaign carried out in the alluvial aquifer of the Bajo Guadalhorce Valley (M&#225;laga, S Spain) in April 2017. Additionally, historical data from the last 40 years have been compiled.</p><p>Results show that groundwater generally flow towards the Guadalhorce River, where gaining relationship remains more patent in its lower river stretch, and the Mediterranean Sea. Some negative groundwater elevations close to the coastal fringe are observed in several piezometers because of pumping during the study period. Electrical conductivity values were, generally, lower than 4 mS/cm in all samples and the major changes in groundwater mineralization were determined in the Guadalhorce River Mouth. In this aquifer sector, substantial increases in groundwater mineralization were identified, up to 50% in some observation points. Cl<sup>-</sup> and SO<sub>4</sub><sup>2-</sup>concentrations in groundwater (the more concentrated solutes of all) evolve similarly in time to that of electrical conductivity, with maximum recorded values up to 10000 mg/l and 2000 mg/l, respectively, the coastal area in 2017.</p><p>Changes in EC and Cl<sup>-</sup> and SO<sub>4</sub><sup>2-</sup> concentrations in the river mouth area could be related to the land use changes that took place here between 1997 and 2003, where channelization works resulted in the splitting of the river in two branches. This could have affected to the aquifer hydrodynamics, due to the reduced groundwater discharge to the river mouth area between both branches. This could have favored the mixing among surface water, sea water and groundwater. Also, the urbanized area has increased over the years, reducing the recharge area of this part of the aquifer, but also flowing groundwater has increased because of pumping reduction (up to 7 hm<sup>3</sup>/year). The presence of Cl<sup>- </sup>in the aquifer, as well as SO<sub>4</sub><sup>2-</sup>, is due to evaporite dissolution and the interaction with the Mediterranean Sea in the coastal area. An extra input of SO<sub>4</sub><sup>2-</sup> comes from of the fertilizers used in agriculture.</p><p>The availability of long-term hydrogeological data in a coastal aquifer (1976-2017) has allowed to check a remarkable salinization in the coastal area, caused by land use modifications. So, the monitoring of hydrogeological data is a very important tool to be used by land managers in coastal aquifers, where groundwater can be seriously endangered by human activities.</p>
<p>The Yucatan state, Mexico, encloses a large karstic aquifer, which is confined near the coast. There are places where this confinement is fractured creating springs that discharge to wetlands or shallow lagoons, which are important because of the freshwater ecosystems that develop around them (locally known as Petenes), and because they provide a thermohaline equilibrium in these systems. Previous studies reported that during spring low tide, the spring becomes a sink, reversing the flow in the Peten channel connecting the lagoon to the spring. Potentially, this inversion of the flow can cause the intrusion of brackish &#8211; and sometimes hypersaline - water from the lagoon into the aquifer, which can also have ecological implications. The flow reversal was observed in two sampling campaigns and it occurred a total of 16 times. In the last sampling campaign, it was confirmed that the spring becomes a sink, with measured water velocities of about 0.37 m/s at the channel end close to the spring. Preliminary results suggest that the flow reversal is controlled by the discharge from the aquifer, the confinement of the aquifer, the geometry of the lagoon and the inlet channel, as well as the sea tides. A simple 1D analytical solution was used to explain this phenomenon, which describes the hydrodynamic interaction between the lagoon and the aquifer by solving the heat equation, which can be used to simulate flow in both systems, a confined aquifer and a highly frictional lagoon. Therefore, the same solution was used to simulate the gradients observed between the confined aquifer and the lagoon. The solution was implemented as a Python library using Fourier series, and has the advantage that it can be used with more general boundary conditions and finite length systems. Finally, we present coefficients that can be used to determine under which conditions the flow reverses at the lagoon.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.