BACKGROUND: Long-non-coding RNAs, a class of transcripts with lengths > 200 nt, play key roles in tumour progression. Previous reports revealed that LINC00052 (long intergenic non-coding RNA 00052) was strongly downregulated during breast cancer multicellular spheroids formation and suggested a role in cell migration and oxidative metabolism. OBJECTIVE: To examine the function of LINC00052 in MCF-7 breast cancer cells. METHODS: Loss-of-function studies were performed to evaluate LINC00052 role on MCF-7 breast cancer cells. Microarray expression assays were performed to determine genes and cellular functions modified after LINC00052 knockdown. Next, the impact of LINC00052 depletion on MCF-7 cell respiration and migration was evaluated. RESULTS: 1,081 genes were differentially expressed upon LINC00052 inhibition. Gene set enrichment analysis, Gene Ontology and Key Pathway Advisor analysis showed that signalling networks related to cell migration and oxidative phosphorylation were enriched. However, whereas LINC00052 knockdown in MCF-7 cells revealed marginal difference in oxygen consumption rates when compared with control cells, LINC00052 inhibition enhanced cell migration in vitro and in vivo, as observed using a Zebrafish embryo xenotransplant model. CONCLUSION: Our data show that LINC00052 modulates MCF-7 cell migration. Genome-wide microarray experiments suggest that cancer cell migration is affected by LINC00052 through cytoskeleton modulation and Notch/β-catenin/NF-κB signalling pathways.
Grafting is the gold standard for the treatment of severe skin burns. Frequently, allogeneic tissue is the only transient option for wound coverage, but their use risks damage to surrounding tissues. MicroRNAs have been associated with acute rejection of different tissues/organs. In this study, we analyzed the expression of miR-31, miR-155, and miR-221 and associate it with graft tolerance or rejection using a murine full-thickness skin transplantation model. Recipient animals for the syngeneic and allogeneic groups were BALB/c and C57BL/6 mice, respectively; donor tissues were obtained from BALB/c mice. After 7 days post-transplantation (DPT), the recipient skin and grafts in the syngeneic group maintained most of their structural characteristics and transforming growth factor (TGF)β1 and TGFβ3 expression. Allografts were rejected early (Banff grades II and IV at 3 and 7 DPT, respectively), showing damage to the skin architecture and alteration of TGFβ3 distribution. miRNAs skin expression changed in both mouse strains; miR-31 expression increased in the recipient skin of syngeneic grafts relative to that of allogeneic grafts at 3 and 7 DPT (p < 0.05 and p < 0.01, respectively); miR-221 expression increased in the same grafts at 7 DPT (p < 0.05). The only significant difference between donor tissues was observed for miR-155 expression at 7 DPT which was associated with necrotic tissue. Only miR-31 and miR-221 levels were increased in the blood of BALB/c mice that received syngeneic grafts after 7 DPT. Our data suggest that local and systemic miR-31 and miR-221 overexpression are associated with graft tolerance.
Introducción: el infarto agudo de miocardio es una entidad de alta prevalencia y posibilidad de muerte en caso de que no se cuente con una atención oportuna, incluso durante la pandemia por el virus SARS-CoV-2. Objetivo: demostrar el impacto de la pandemia por SARS-CoV-2 en el funcionamiento del código infarto, en nuestra Unidad Médica de Alta Especialidad, al comparar los indicadores médicos del síndrome isquémico coronario agudo con elevación del segmento ST, antes y después
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.