BackgroundHuman papillomavirus (HPV) is recognized as an important risk factor for laryngeal carcinogenesis. Although HPV-16 and 18 have been strongly implicated, the presence of other high-risk HPV (HR-HPV) genotypes or the coinfection with Epstein-Barr virus (EBV) or Merkel cell polyomavirus (MCPV) may increase the risk, but their etiological association has not been definitively established.MethodsWe characterized the genotype-specific HPV and the frequency of EBV and MCPV infections through the detection of their DNA in 195 laryngeal specimens of squamous cell carcinoma (SCC) histologically confirmed.ResultsHPV DNA was detected in 93 (47.7%) specimens. HPV-11 was the most frequent with 68 cases (73.1%), and HPV-52 was the most frequently HR-HPV found with 51 cases, which corresponds to 54.8% of all HPV-positive specimens. EBV DNA was detected in 54 (27.7%) tumor tissue specimens of which 25 (46.3%) were in coinfection with HPV. MCPV DNA was detected only in 11 (5.6%) cases of which 5 (45.4%) were in coinfection with an HR-HPV. No association between the presence of DNA of the three examined viruses and the patient smoking habits, alcohol consumption, age, the keratinization status, differentiation grade, or localization of the tumor in the larynx were found.DiscussionHPV-52 was the most prevalent HR-HPV, which may suggest that this and other genotypes in addition to HPV-16 and 18 could be considered for prophylaxis. However, further studies including non-cancer larynx cases and the evaluation of other molecular markers and viral co-infection mechanisms are needed to determine the role of the different HR-HPV genotypes, EBV, and MCPV in the etiology of SCC of the larynx.
miR-145, miR-155, and miR-382 have been proposed as noninvasive biomarkers to distinguish breast cancer patients from healthy individuals. However, it is unknown if these three miRNAs are secreted by exosomes. Thus, we hypothesized that miR-145, miR-155, and miR-382 in breast cancer patients are present in exosomes. We isolated exosomes from serum of breast cancer patients and healthy donors, then we characterized them according to their shape, size, and exosome markers by scanning electron microscopy, atomic force microscopy, nanoparticle tracking analysis (NTA), and Western blot and determined the exosome concentration in all samples by NTA. Later, exosomal small RNA extraction was done to determine the expression levels of miR-145, miR-155, and miR-382 by qRT-PCR. We observed a round shape of exosomes with a mean size of 119.84 nm in breast cancer patients and 115.4 nm in healthy donors. All exosomes present the proteins CD63, Alix, Tsg, CD9, and CD81 commonly used as markers. Moreover, we found a significantly high concentration of exosomes in breast cancer patients with stages I, III, and IV compared to healthy donors. We detected miR-145, miR-155, and miR-382 in the exosomes isolated from serum of breast cancer patients and healthy donors. Our results show that the exosomes isolated from the serum of breast cancer patients and healthy donors contains miR-145, miR-155, and miR-382 but not in a selective manner in breast cancer patients. Moreover, our data support the association between exosome concentration and the presence of breast cancer, opening the possibility to study how miRNAs packaged into exosomes play a role in BC progression.
Background IMMUNEPOTENT-CRP® (I-CRP) is a bovine dialyzable leukocyte extract containing transfer factor. It is a cost-effective, unspecific active immunotherapy that has been used in patients with non-small cell lung cancer (NSCLC) as an adjuvant to reduce the side-effects of chemotherapy and radiotherapy, and has shown cytotoxic activity in vitro on different cancer cell lines. However, its mechanism of action against lung cancer cells has not been assessed. Therefore, the objective of this work was to assess the cytotoxic mechanism of I-CRP on lung cancer cell lines. Methods We assessed cell viability through MTT assay on the NSCLC cell lines A549, A427, Calu-1, and INER-51 after treatment with I-CRP. To further understand the mechanisms of cell viability diminution we used fluorescence-activated cell sorting to evaluate cell death (annexin-V and propidium iodide [PI] staining), cell cycle and DNA degradation (PI staining), mitochondrial alterations (TMRE staining), and reactive oxygen species (ROS) production (DCFDA staining). Additionally, we evaluated caspase and ROS dependence of cell death by pretreating the cells with the pan-caspase inhibitor Q-VD-OPH and the antioxidant N-acetylcysteine (NAC), respectively. Results Our data shows that I-CRP is cytotoxic to NSCLC cell lines in a dose and time dependent manner, without substantial differences between the four cell lines tested (A549, A427, Calu-1, and INER-51). Cytotoxicity is induced through regulated cell death and cell cycle arrest induction. I-CRP-induced cell death in NSCLC cell lines is characterized by DNA degradation, mitochondrial damage, and ROS production. Moreover, cell death is independent of caspases but relies on ROS production, as it is abrogated with NAC. Conclusion Altogether, these results improve the knowledge about the cytotoxic activity of I-CRP on NSCLC cells, indicating that cell death, cell cycle arrest, DNA degradation and mitochondrial damage are important features, while ROS play the main role for I-CRP mediated cytotoxicity in lung cancer cells.
Information concerning structured treatment interruptions (STI) of the Highly Active Antiretroviral Therapy (HAART) and their risk for selecting antiretroviral drug resistance in children is scarce. In this study, we searched for antiretroviral drug resistance mutations at the end of five viral rebounds of two children with HIV and a chronically undetectable viral load (VL) who underwent an STI program. The HAART was interrupted for 4 weeks and then restarted and continued for 12 weeks for three cycles. VL, CD4+/CD8+ lymphocytes, and clinical status were evaluated at the end of each STI and at 6 and 12 weeks after HAART was resumed. Treatment of both the patients based on zidovudine+lamivudine+ritonavir remained identical during the study. The reverse transcriptase (RT)- and protease (PR)-coding regions were sequenced at the end of each viral rebound. One patient experienced progressively lower viral rebounds (269000-31300 at the first and third rebounds, respectively), while the other patient did not experience such a reduction, and the VL of both the patients fell to undetectable levels during therapy. In the five viral rebounds examined, no mutations for resistance to protease inhibitors (PIs) were found and the analysis indicated susceptibility to all PIs currently in clinical use. Although the mutation K103R associated with non-nucleoside reverse transcriptase inhibitor resistance was found in two viral rebounds of one patient, the analysis indicated the absence of resistance to RT inhibitors. As no mutation related to antiretroviral drug resistance was found, our results suggest that the STI program evaluated may have a low risk of selecting antiretroviral drug resistance. Nevertheless, further studies evaluating larger cohorts over longer periods are required before definitive conclusions about the safety of STI of HAART in children may be drawn.
Chemotherapy Related Cognitive Impairment (CRCI), also called chemobrain, diminishes cancer patient's life quality. Breast cancer (BC) patients have been described to be importantly affected, however, the mechanism leading to CRCI has not been fully elucidated. Recent research proposes microglia as the main architect of CRCI, thus dysregulations in these cells could trigger CRCI. The aim of this research was to evaluate the effects of two drugs commonly used against breast cancer, cyclophosphamide (CTX) and epirubicin (EPI), on the microglia cell line SIM-A9, using the BC cell line, 4T1, as a control. Our results show that CTX and EPI decrease microglia-cell viability and increase cell death on a concentration-dependent manner, being 5 and 2 times more cytotoxic to microglia cell line than to breast cancer 4T1cells, respectively. Both chemotherapies induce cell cycle arrest and a significant increase in p53, p16 and γ-H2AX in breast cancer and microglia cells. Furthermore, mitochondrial membrane potential (ΔΨm) diminishes as cell death increases, and both chemotherapies induce reactive oxygen species (ROS) production on SIM-A9 and 4T1. Moreover, caspase activation increases with treatments and its pharmacological blockade inhibits CTX and EPI induced-cell death. Finally, low concentrations of CTX and EPI induce γ-H2AX, and EPI induces cytokine release, NO production and Iba-1 overexpression. These findings indicate that microglia cells are more sensitive to CTX and EPI than BC cells and undergo DNA damage and cell cycle arrest at very low concentrations, moreover EPI induces microglia activation and a pro-inflammatory profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.