The aim of this study was to evaluate the influence of forest structure (mainly resulting from human uses) and forest type (the identity of the dominant tree species) on biodiversity. We determined the diversity of two taxonomical groups: the understory vegetation and the edaphic carabid beetle fauna. We selected eight types of forest ecosystems (five replicates or stands per forest type): pine (Pinus sylvestris) plantations of three age classes (10, 40 and 80 years since reforestation), an old-growth relict natural pine forest, and four types of oak (Quercus pyrenaica) stands: mature forests with livestock grazing and firewood extraction, mature forests where uses have been abandoned, ''dehesa'' ecosystems and shrubby oak ecosystems. The results obtained by a global PCA analysis indicated that both tree size and dominant species influenced the ordination of the 40 forest stands. In general, carabids were more sensitive to changes in forest heterogeneity and responded more clearly to the analysed structural variables than the understory vegetation, although the species richness of both groups was significantly correlated and higher in case of oak forests. Pine forest ecosystems were characterised by the lowest species richness for both taxonomical groups, the lowest plant diversity and by the lowest coefficients of variation and, consequently, low structural heterogeneity. As a result, it was very difficult to discriminate the effects of the spatial heterogeneity and the dominant tree species on biodiversity.
Abstract. We examined the occurrence of carabid beetles (Coleoptera, Carabidae) at the edges of oak (Quercus pyrenaica) and beech (Fagus sylvatica) forests in León, NW Spain. Pitfall traps were used to collect beetles from April to October 2002, and leaf litter cover and depth were measured. Traps were placed at three distances (0, 50 and 100 m) from the edges of eight forest patches. A total of 5436 carabids belonging to 43 species were collected. We found no statistically significant edge effect at the carabid assemblage level, i.e. the number of species and individuals was not higher at the edge compared to the forest interior. However, individual species were affected by distance from the edge. Five of the 14 species analysed responded predictably to the edge, three of them statistically significantly so. Four species did not respond in the predicted direction, two of them statistically significantly so. We found a considerable difference between forest types in terms of carabid assemblage composition and response to the edge. Oak forests were species richer and beech forests had a higher number of individuals. These differences were probably due to smallscale habitat heterogeneity in the oak forest patches, caused by man, and the homogeneous structure of beech forests. Leaf litter appeared to be one possible factor influencing the distribution of some species from the interior to the edge of forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.