This study presents the impact of carbon nanotubes (CNTs) on mitochondrial oxygen mass flux (Jm) under three experimental conditions. New experimental results and a new methodology are reported for the first time and they are based on CNT Raman spectra star graph transform (spectral moments) and perturbation theory. The experimental measures of Jm showed that no tested CNT family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction of Jm for other CNTs was provided by random forest using eight features, obtaining test R-squared (R2) of 0.863 and test root-mean-square error (RMSE) of 0.0461. The results demonstrate the capability of encoding CNT information into spectral moments of the Raman star graphs (SG) transform with a potential applicability as predictive tools in nanotechnology and material risk assessments.
This chapter first presents the interrelations between computing and genetics, which both are based on information and, particularly, self-reproducing artificial systems. It goes on to examine genetic code from a computational viewpoint. This raises a number of important questions about genetic code. These questions are stated in the form of an as yet unpublished working hypothesis. This hypothesis suggests that many genetic alterations are caused by the last base of certain codons. If this conclusive hypothesis were to be confirmed through experiementation if would be a significant advance for treating many genetic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.