In the recent years, many research lines on Functional Encryption (FE) have been suggested and studied regarding the functionality, security, or efficiency. Nevertheless, an open problem on a basic functionality, the single-input inner-product (IPFE), remains: can IPFE be instantiated based on the Ring Learning With Errors (RLWE) assumption?The RLWE assumption provides quantum-resistance security while in comparison with LWE assumption gives significant performance and compactness gains. In this paper we present the first RLWE-based IPFE scheme. We carefully choose strategies in the security proofs to optimize the size of parameters. More precisely, we develop two new results on ideal lattices. The first result is a variant of Ring-LWE, that we call multi-hint extended Ring-LWE, where some hints on the secret and the noise are given. We present a reduction from RLWE problem to this variant. The second tool is a special form of Leftover Hash Lemma (LHL) over rings, known as Ring-LHL. To demonstrate the efficiency of our scheme we provide an optimized implementation of RLWE-based IPFE scheme and show its performance on a practical use case. We further present new compilers that, combined with some existing ones, can transfer a single-input FE to its (identity-based, decentralized) multi-client variant with linear size of the ciphertext (w.r.t the number of clients).
Polynomial multiplication algorithms such as Toom-Cook and the Number Theoretic Transform are fundamental building blocks for lattice-based post-quantum cryptography. In this work we present correlation power analysis based side-channel analysis methodologies targeting every polynomial multiplication strategy for all lattice-based post-quantum key encapsulation mechanisms in the final round of the NIST post-quantum standardization procedure. We perform practical experiments on real side-channel measurements demonstrating that our method allows to extract the secret key from all lattice-based post-quantum key encapsulation mechanisms. Our analysis shows that the used polynomial multiplication strategy can significantly impact the time complexity of the attack.
The CCA-secure lattice-based post-quantum key encapsulation scheme Saber is a candidate in the NIST’s post-quantum cryptography standardization process. In this paper, we study the implementation aspects of Saber in resourceconstrained microcontrollers from the ARM Cortex-M series which are very popular for realizing IoT applications. In this work, we carefully optimize various parts of Saber for speed and memory. We exploit digital signal processing instructions and efficient memory access for a fast implementation of polynomial multiplication. We also use memory efficient Karatsuba and just-in-time strategy for generating the public matrix of the module lattice to reduce the memory footprint. We also show that our optimizations can be combined with each other seamlessly to provide various speed-memory trade-offs. Our speed optimized software takes just 1,147K, 1,444K, and 1,543K clock cycles on a Cortex-M4 platform for key generation, encapsulation and decapsulation respectively. Our memory efficient software takes 4,786K, 6,328K, and 7,509K clock cycles on an ultra resource-constrained Cortex-M0 platform for key generation, encapsulation, and decapsulation respectively while consuming only 6.2 KB of memory at most. These results show that lattice-based key encapsulation schemes are perfectly practical for securing IoT devices from quantum computing attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.