The vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators, is crucial to calcitriol signalling. VDR is regulated by genetic and environmental factors and it is hypothesised that the response to vitamin D supplementation could be modulated by genetic variants in the VDR gene. The best studied polymorphisms in the VDR gene are Apal (rs7975232), BsmI (rs1544410), Taql (rs731236) and Fokl (rs10735810). We conducted a systematic review and meta-analysis to evaluate the response to vitamin D supplementation according to the BsmI, TaqI, ApaI and FokI polymorphisms. We included studies that analysed the relationship between the response to vitamin D supplementation and the genotypic distribution of these polymorphisms. We included eight studies that enrolled 1038 subjects. The results showed no significant association with the BsmI and ApaI polymorphisms (p = 0.081 and p = 0.63) and that the variant allele (Tt+tt) of the TaqI polymorphism and the FF genotype of the FokI variant were associated with a better response to vitamin D supplementation (p = 0.02 and p < 0.001). In conclusion, the TaqI and FokI polymorphisms could play a role in the modulation of the response to vitamin D supplementation, as they are associated with a better response to supplementation.
Background: Insulin may play a key role in bone metabolism, where the anabolic effect predominates. This study aims to analyze the relationship between insulin resistance and bone quality using the trabecular bone score (TBS) and three-dimensional dual-energy X-ray absorptiometry (3D-DXA) in non-diabetic postmenopausal women by determining cortical and trabecular compartments. Methods: A cross-sectional study was conducted in non-diabetic postmenopausal women with suspected or diagnosed osteoporosis. The inclusion criteria were no menstruation for more than 12 months and low bone mass or osteoporosis as defined by DXA. Glucose was calculated using a Hitachi 917 auto-analyzer. Insulin was determined using an enzyme-linked immunosorbent assay (EIA). Insulin resistance was estimated using a homeostasis model assessment of insulin resistance (HOMA-IR). DXA, 3D-DXA, and TBS were thus collected. Moreover, we examined bone parameters according to quartile of insulin, hemoglobin A1C (HbA1c), and HOMA-IR. Results: In this study, we included 381 postmenopausal women. Women located in quartile 4 (Q4) of HOMA-IR had higher values of volumetric bone mineral density (vBMD) but not TBS. The increase was higher in the trabecular compartment (16.4%) than in the cortical compartment (6.4%). Similar results were obtained for insulin. Analysis of the quartiles by HbA1c showed no differences in densitometry values, however women in Q4 had lower levels of TBS. After adjusting for BMI, statistical significance was maintained for TBS, insulin, HOMA-IR, and HbA1c. Conclusions: In non-diabetic postmenopausal women there was a direct relationship between insulin resistance and vBMD, whose effect is directly related to greater weight. TBS had an inverse relationship with HbA1c, insulin, and insulin resistance unrelated to weight. This might be explained by the formation of advanced glycosylation products (AGEs) in the bone matrix, which reduces bone deformation capacity and resistance, as well as increases fragility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.