This paper describes the characterization of the light hole, also known as the lumen, in implanted stents affected by restenosis processes using bioimpedance (BI) as a biomarker. The presented approach will enable real-time monitoring of lumens in implanted stents. The basis of the work hereby reported is the fact that neointimal tissues involved in restenosis can be detected and measured through their impedance properties, namely, conductivity and permittivity. To exploit these properties, a 4-electrode setup for BI measurement is proposed. This setup allows study of the influence of the various tissues involved in restenosis fat, muscle, fibre, and endothelium, together with the blood, on the BI value at several frequencies. In addition, BI simulation tests were performed using the electric physics module available in COMSOL Multiphysics®. Interestingly, fat constitutes the most influential layer on the value of impedance (measured in kΩ/μm—magnitude change per micrometre of lumen occlusion). A case study using a standard stent is also presented. In this study, where the involved tissues and blood were simultaneously considered, we conducted an analysis for stable and vulnerable plaques in restenosis test situations. In this regard, the proposed method is useful to test the stent obstruction and detect potential dangerous cases due to nonstable fat accumulation.
This work describes how is possible the definition of the light hole or lumen in implanted stents affected by restenosis processes using the BioImpedance (BI) as biomarker. The main approach is based on the fact that neointimal tissues implied in restenosis can be detected and measured thanks to their respective conductivity and dielectric properties. For this goal, it is proposed a four-electrode setup for bioimpedance measurement. The influence of the several involved tissues in restenosis: fat, muscle, fiber, endothelium and blood, have been studied at several frequencies, validating the setup and illustrating the sensitivity of each one. Finally, a real example using a standard stent, has been analyzed for stable and vulnerable plaques in restenosis test cases, demonstrating that the proposed method is useful for the stent obstruction test. Bioimpedance simulation test has been performed using the electric physics module in COMSOL Multiphysics®.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.