Antimicrobial peptides (AMPs) are evolutionarily old components of innate immunity found in all living pluricellular organisms. Interestingly, some organisms express families of AMPs with only a slight variation among their members, possibly to increase their spectrum of activity. Despite the growing body of knowledge about their biological activity and mode of action on bacteria, only a few of them have been tested on Leishmania, a worldwide spread protozoan pathogen, and the parameters contributing to this activity are yet to be determined. We report on the anti-Leishmania activity and mode of action of bombinins H2 and H4 isolated from the skin secretion of the frog Bombina variegata. H4, the most active, is the first natural AMP of animal origin with a single L- to D-amino acid isomerization. Membrane depolarization and membrane permeation assays, as well as electron microscopy, suggest that the lethal mechanism involves plasma membrane permeation and/or disruption. To better understand the enhanced activity of H4, we determined the peptide's structure in membranes mimicking those of mammals, bacteria, and Leishmania by using ATR-FTIR and CD spectroscopies and assessed their membrane binding by using surface plasmon resonance. The data reveal that (i) H2 but not H4 partially aggregates in membranes mimicking those of Leishmania, (ii) H2 is slightly more helical than H4 in all membranes, and (iii) H4 binds the Leishmania model membrane approximately 5-fold better than H2. This study highlights the importance of a single alpha-amino acid epimerization as a tool used by nature to modulate the activity of AMPs. In addition, our findings suggest bombinins H as potential templates for the development of new drugs with a new mode of action against Leishmania.
Histatin 5 (Hst5) is a human salivary antimicrobial peptide that targets fungal mitochondria. In the human parasitic protozoa Leishmania, the mitochondrial ATP production is essential, as it lacks the bioenergetic switch between glycolysis and oxidative phosphorylation described in some yeasts. On these premises, Hst5 activity was assayed on both stages of its life cycle, promastigotes and amastigotes (LC(50)=7.3 and 14.4 microM, respectively). In a further step, its lethal mechanism was studied. The main conclusions drawn were as follows: 1) Hst5 causes limited and temporary damage to the plasma membrane of the parasites, as assessed by electron microscopy, depolarization, and entrance of the vital dye SYTOX Green; 2) Hst5 translocates into the cytoplasm of Leishmania in an achiral receptor-independent manner with accumulation into the mitochondrion, as shown by confocal microscopy; and 3) Hst5 produces a bioenergetic collapse of the parasite, caused essentially by the decrease of mitochondrial ATP synthesis through inhibition of F(1)F(0)-ATPase, with subsequent fast ATP exhaustion. By using the Hst5 enantiomer, it was found that the key steps of its lethal mechanism involved no chiral recognition. Hst5 thus constitutes the first leishmanicidal peptide with a defined nonstereospecific intracellular target. The prospects of its development, by its own or as a carrier molecule for other leishmanicidal molecules, into a novel anti-Leishmania drug with a preferential subcellular accumulation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.